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1. Ramsey expansions

The general problem that people in this area are interested in is the following:

Question 1. Given a Fräıssé class, or equivalently a homogeneous structure, find
a minimal Ramsey expansion.

Example 1. For the class of graphs, the minimal Ramsey expansion is the class
of ordered graphs. We will soon see a more general way to see that this is in fact
minimal.

1.1. Criterion for being Ramsey.

Proposition 1. An ω-categorical structure M (homogeneous in a relational lan-
guage L) is Ramsey iff for every universal theory T ′ in a language L′ ⊇ L consistent
with Th (M), M has a definable expansion to a model of T ′.

Proof. ( =⇒ ): Assume M is Ramsey and T ′ as above. Let M ′ be an expansion of
M to a model of T ′. By compactness we can assume L′ \ L is finite. Now we want
to color the substructures (subsets since relational) of M according to how they
expand to L′. Since M is Ramsey, for every finite substructure A ⊆M , and every
B ⊆M , there is some C such that there is a copy B′ of B in C such that all copies
of A in B′ have the same expansion to L′. Since this is how we colored copies of A.

In particular, we can find a homogeneous copy of B in M . And then by com-
pactness, in an elementary extension M∗ of M we can find a copy M0 of M where
all of the copies of A in M0 have the same expansion to L′. This implies that L′

is invariant under L-automorphisms. So by ω-categoricity, the expansion to L′ is
0-definable. Therefore M0 |= T ′ as T ′ is universal.

(⇐=): Assume the conclusion. Let A and B be given, and write r for the number
of colors. Then consider

L′ = L ∪ {R1 (x) · · ·Rr (x)}

where |x| = |A|. Then we want to show M → (B)
A
r . A coloring of copies of A in

M gives an expansion of M to L′. Let T ′ be its universal theory. By assumption,
there is a definable expansion M∗ of M to a model of T ′. Since M∗ models the
universal theory of M , M∗ |= T∀ (M), we know there is a copy of B in M , which is
colored as some/any copy of B in M∗. On that copy of B, all copies of A have the
same color. �
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This proposition means that in order to prove something isn’t Ramsey, all we
have to do is show it doesn’t have such a definable expansion.

Corollary 1. A Ramsey structure has a definable linear order.

Proof. Take L′ = L ∪ {≤}, and then we can take T ′ to be the theory of linear
orders, which is universal. �

1.2. Examples.

Example 2. Take L = {E} to be equivalence relation. If we consider T ′ in
L′ = L ∪ {≤} where ≤ is a linear order with convex classes, we see that ordered
equivalence relations are not Ramsey since the Fräıssé limit of that class would
have all classes dense and does not induce an order on the quotient. And without
this then we definitely don’t have a definable order with convex classes. So this is
not Ramsey.

It is true however that the class of convexly ordered equivalence relations is
Ramsey.

Exercise 1. Show that this is Ramsey. [This does not follow from the theorems
we have seen. This should be done by hand.]

Example 3. Consider circular orders. Recall (Q, C (x, y, z)) is a reduct of DLO.
A Ramsey expansion must define an order of which C is the corresponding circular
order (this is a universal condition). So the minimal Ramsey expansion is just DLO.

Example 4. We can also look at partial orders. Any Ramsey expansion of partial
orders will have to define an order which extends the partial orders. We claim
this class is Ramsey. Take L′ = {≤,E} where E is a linear extension of ≤. The
forbidden substructures are as follows. First we cannot have a ≥ b, a E b for a 6= b,
and the second is that a1 ≤ a2 ≤ · · · ≤ an and ¬ (a1 ≤ an) for all n.

Now we apply the theorem. So we need a Ramsey class. We claim that if only
the first is satisfied, then this is the class of ordered graphs. So for the Ramsey
class we take R to be the class of structures in {≤,E} with a ≤ b =⇒ a E b and
E is a linear order. This is the same thing as ordered graphs, and hence is Ramsey.
Let K ⊆ R be the subclass where ≤ is transitive. It is clear that it is hereditary.
Then we need to check that it has strong (disjoint) amalgamation. This is clear
because, e.g. if a ≤ b and b ≤ c, we just insist that a ≤ c, and then amalgamate
this arbitrarily to a linear order. Now we need to check that it is locally finite. Let
C0 ∈ R. Then we can take n = |C0|. Now let C be an L′-structure such that:

• C0 is a completion of C, i.e. there is a homomorphism embedding π : C →
C0, and
• every substructure of size ≤ n of C has a strong K-completion.

Concretely this means the following. The only situation where we don’t have a
strong K-completion is if we have something like

a1 ≤ a2 ≤ · · · ≤ ak a1 E ak ¬ (a1 ≤ ak)(1)

since we can’t add the ‘edge’ between a1 and ak. Now we have to check there is a
bound on k. So consider some situation as in (1). Then π has to be injective on
{a1, · · · , ak} because we must have

π (a1) ..π (a2) ..· · · ..π (ak)

so k ≤ n and the theorem tells us this is a Ramsey class.
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Example 5. A Ramsey expansion of a (nontrivial) reduct of the random graph is
just given by the ordered random graph, and this is minimal in the sense that any
Ramsey expansion must have a 0-definable graph whose reduct is the given one.

Example 6. If we take L = {≤1,≤2} and the class C of finite structures where ≤1

and ≤2 are linear orders, then C is Ramsey. The Fräıssé limit is two linear orders
with no link between them. The fact that this is Ramsey is something which we
can’t see from the theorem since it is not locally finite.

Exercise 2 (*). Prove this. [Hint: Think of such structures as two linear orders
with a bijection between them.]
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