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The combinatorial portion of the course is now more-or-less over. Now we will
start discussing the automorphism group. This will deal with topological dynamics
and descriptive set theory.

1. Kechris-Pestov-Todorcevic correspondence

Let M be a homogeneous structure (locally finite, or just relational). Recall that
M is Ramsey iff for every universal theory T ′ in a language L′ ⊇ L consistent with
Th (M), M has a definable expansion to a model of T ′.

Take such a T ′, and let M ′ be some expansion of M to a model of T ′ in L′ ⊇ L.
Now we have an action Aut (M)

�

M ′. Another way of thinking of this is the
following. For simplicity say L′ = L ∪ {R} for R some k-ary relation. Then an

expansion of M to L′ can be thought of as an element of 2(M)k . Note that the

set S of elements of 2(M)k corresponding to models of T ′ is closed in the product
topology. In particular, it is compact.

Now we have an action Aut (M)

�

2(M)k and then the action we really care
about is the induced action Aut (M)

�

S. This is well defined because the forbidden
conditions defining S are invariant under automorphisms. Furthermore this action
is continuous, i.e. the map

Aut (M)× 2(M)k → 2(M)k

is continuous. To see this let V ⊆ 2(M)k be a basic open, i.e. it depends only on
a finite set a ∈ M . If g · n ∈ V , then for any n′ which coincides with n on g−1 (a)
and for any h such that h|g−1(a) = g|g−1(a) we have h · n′ ∈ V .

So we have a continuous action on a compact space S. Now we can restate the
criterion from above as follows:

M is Ramsey iff for all T ′, the action Aut (M)

�

S has a fixed point.

Now we might wonder what is so special about S, and as it turns out the only
special thing is that it’s compact. To see this we need some definitions.

Definition 1. Let G be a topological group. Then a G-flow is a compact Hausdorff
space X along with a continuous action G

�

X.

Theorem 1 (KPT). If M is as above, then M is Ramsey iff all Aut (M) flows
have a fixed point.

Proof. (⇐=): See above.
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( =⇒ ): Assume M is Ramsey and all substructures are rigid.1 Let G = Aut (M),
and let X be a G-flow. Assume X does not have a fixed point. Now we want to
use compactness to find finitely many elements of the group which move all of the
points. First we recall the following lemma:

Lemma 1 (Urysohn). If X is compact Hausdorff, and A,B ⊆ X are two disjoint,
closed subspaces, then there is a continuous function f : X → [0, 1] such that
f |A = 0 and f |B = 1.

By assumption, for all x ∈ X, there is f : X → [0, 2] and g ∈ G such that
f (x) = 0 and f (gx) = 2. Given such f and g, the set:

Uf,g = {x ∈ X | |f (x)− f (gx)| > 1}
is open. By compactness, there are f1, · · · , fn and g1, · · · , gn ∈ G such that for all
x ∈ X there is i ≤ n such that

|fi (x)− fi (gix)| > 1 .

Define

X R2

x (f1 (x) , · · · , fn (x))

F

so for all x ∈ X there exists i ≤ n such that

‖F (x)− F (gix)‖∞ > 1 .

Now notice that F is continuous and X is compact, so the image of F in Rn is
compact. So now we can discretize the image into finitely many blocks each with
diameter less than 1/3. I.e. we can write

F (X) = Y1 ∪ · · · ∪ Yn

where the Yi have diameter < 1/3.
Now we claim there is some neighborhood V ⊆ G of the identity such that for

all g ∈ V and x ∈ X

‖F (x)− F (gx)‖ < 1/3 .

This is because F is continuous and X is compact. There is a finite2 substructure
A ⊆M such that

(1) {g ∈ G | g|A = id|A} ⊆ V .

In particular, if g|A = h|A, then
∥∥F (x)− F

(
h−1gx

)∥∥ < 1/3, so for all x ∈ X,∥∥F (g−1x)− F
(
h−1x

)∥∥ <
1

3
.

The idea is that if two things do the same thing on A, then their image is very
close. So they almost do the same thing even after applying F .

Fix x0 ∈ X, and consider a copy A′ of A in M . Now we want to color these
copies of A. Let c (A′) be the minimal j ≤ m for which there is g ∈ G such that
g (A) = A′ with F

(
g−1x0

)
∈ Yj . What we’re really coloring is cosets of (1) (which

is equivalent to a coloring of copies of A in M).

1This is certainly true if we have a linear order.
2We are using the locally finite condition to get this to be finite.
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Now we want to construct some substructure B which contradicts Ramsey. So
let B be the structure generated by

A ∪
⋃
i≤n

g−1i (A) .

Since M is Ramsey, there is B′ ⊆ M a copy of B such that all copies of A in B′

have the same color j.
Let g∗ ∈ G map B to B′, and let x∗ = g−1∗ (x0). Now we show that

‖F (gix∗)− F (x∗)‖ < 1

for all i ≤ n. So somehow this x∗ is not moved much. This will be the contradiction.
Set g0 = id. For i ≤ n we have that g∗g

−1
i (A) is a copy of A in B′, so it has color

j. By the definition of the color, there is some hi ∈ G such that

hi|A = g∗g
−1
i

∣∣
A

F
(
h−1i x0

)
∈ Yj .

So now we just have to compute. We know that

(2) 1/3 >
∥∥F (h−1i x0

)
− F

(
gig
−1
∗ x0

)∥∥ =
∥∥F (h−1i x0 − F (gix∗)

)∥∥ .

Now we have that:

‖F (gix∗)− F (x∗)‖ ≤
∥∥F (gix∗)− F

(
h−1i xi

)∥∥
+
∥∥F (h−1i x0

)
− F

(
h−10 x0

)∥∥+
∥∥F (h−10 x0

)
− F (x∗)

∥∥ .(3)

On the RHS of (3), the first and third terms are less than 1/3 because of (2), and
the middle term is less than 1/3 since they are both in Yj . So the entire RHS is
less than 1. �

1.1. Some definitions. Let G be a topological group.

Definition 2. A topological group G is extremely amenable if all G-flows have a
fixed point.

Definition 3. A G-flow X is minimal if every orbit is dense. Equivalently there is
no proper non-empty G-invariant closed Y ⊆ X. Such a Y is called a subflow.

Remark 1. Every G-flow has a minimal subflow (using Zorn’s lemma) so G is
extremely amenable iff its only minimal flow is {pt}.

Next time we will define a universal flow which measures how far you are from be-
ing extremely amenable, and somehow tells us something about a minimal Ramsey
expansion.
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