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1. Subgroups of Aut (M)

We are moving towards viewing automorphism groups as Polish groups as in
descriptive set theory. But for now we will be consider subgroups of Aut (M).

Let M be an ω-categorical structure.1 Write G = Aut (M). Note that if a ∈M ,
then Ga, the pointwise stabilizer of a, is a clopen subgroup of G since it is defined
by a finite condition. The index of this subgroup is ≤ ℵ0 since cosets are in bijection
with orbits over a. In particular it is finite iff a ∈ algcl (∅).

If X ⊆ M , G{X} is a closed subgroup of X. If X is definable, then G{X} is
clopen. To see this we can look at the parameters defining X = ϕ (M,a). In
particular we note that σ ∈ G{X} iff ϕ (x, a) ⇐⇒ ϕ (x, σ (a)).

The way we should think about this is by looking at imaginaries. Consider the
equivalence relation

Eϕ (x, y) = (∀x)ϕ (x, y) ⇐⇒ ϕ (y, x)

and let e = a/Eϕ ∈ Meq. Then G{X} = Ge, where we identify Aut (M) ∼=
Aut (Meq). Meq is the structure one obtains after adding all imaginary sorts,
i.e. it is the structure obtained by adding a new sort for every ∅-definable quo-
tient of some ∅-definable set. Therefore an automorphism of M induces a unique
automorphism of Meq. The topology is also somehow the same.

We also have a converse to this:

Proposition 1. If H ≤ G is an open subgroup, then there is some e ∈ Meq such
that H = Ge.

Proof. Since H is open we can take a neighborhood of the identity in it: 1 ∈ U ⊆ H
where U is a basic neighborhood of the form:

{σ ∈ G |σ (a) = a} .
Now consider D = Ha ⊆Mk. D is fixed setwise by Ga ⊆ H so it is a-definable. Let
e be the canonical parameter of D. Then we claim that H is the setwise stabilizer
of D, i.e. H = Ge = G{D}. For σ ∈ H we have

σ (D) = gHa = Ha = D .

If σ ∈ Ge we have σ (a) ∈ D so there is τ ∈ H such that σ (a) = τ (a). Then
τ−1σ ∈ Ga ⊆ H. �

Remark 1. There are at most ℵ0 open subgroups of Aut (M) since they are each
stabilizers of some set.

1Not necessarily homogeneous.
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Definition 1. Aut (M) has the small index property (sip) if any small subgroup2

is open.

Remark 2. The point of the sip is that the topology can be recovered from the group
structure. In particular, if Aut (M) and Aut (N) both have sip, and Aut (M) '
Aut (N) in Grp3 then M and N are bi-interpretable. This is shown by looking at
the basis of neighborhoods of the identity.

This property is common for finite homogeneous structures and some ω-category
structures. In fact not many counterexample have been found at all. The following
is an example of one.

Example 1 (Counter-example). Let

L = {Rn (x, x′) | 0 < n < ω}

with 2 classes and Rn some 2n-ary equivalence relation on

{x ∈Mn | ∀i 6= j, xi 6= xj} .

Let M be the Fräıssé limit of this class. Note this is ω-categorical since there are
only finitely many quantifier free types, and M is a Fräıssé limit.

Now we have a map Aut (M) � (Z/2Z)
ω

such that for every M , the two classes
are either preserved or switched. We might give a more general argument that this
is surjective. This group already has too many subgroups of index 2. So if U is an
ultrafilter on ω, we have a subgroup HU ≤ (Z/2Z)

ω
defined by

{f ∈ (Z/2Z)
ω | {t ∈ ω, f (t) = 0} ∈ U} .

Then HU has index 2. By taking the preimage along the surjective map, we get

22
ℵ0

many subgroups of Aut (M) having index 2, so they cannot all be open.

2. Galois group of M

The idea of the above example is that (Z/2Z)
ω

is compact, and the obstruction
to having the sip is having a large compact quotient.

Definition 2. A strong automorphism of M is an element of Aut (M) which fixes
every algcleq (∅). I.e. it fixes setwise each class of each ∅-definable finite equivalence
relation.

Define G0 ≤ G to consist of the strong automorphisms. Then G0 / G, and the
quotient is:

G/G0 ' Aut (algcleq (∅))
which is a compact pro-finite group. algcleq (∅) is the union of finitely many zero
definable sets, so the inverse image consists of actions with finitely many orbits.

Lemma 1. The map G→ Aut (algcleq (∅)) is surjective.

This map is just restriction to the empty set. There is indeed something to
prove here because algcleq (∅) is countable, and if you take a countable subset of
M , restriction onto it is not surjective in general.

2I.e. a subgroup of index less than 2ℵ0 .
3Note this is not TopGrp.
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Proof. Fix σ ∈ Aut (algcleq (∅)). We build a preimage g by the back and forth
argument since we only care about a finite part of σ each time. Inductively we
ensure that if g : a→ b then for any image of a in algcleq we have

g|dcl(a)∩algcleq(∅) = σ|dcl(a)∩algcleq(∅) .
So if we add a ◦ a0, we want b0 such that

tp (a, algcleq (∅)) = tp
(
b, b0σ (algcleq (∅))

)
.

We need to preserve a type over an infinite set. But for a fixed n there are
only finitely many n-types over algcleq (∅) since the relation x ≡algcleq x

′ (where
n = |x|) has cardinality at most the continuum and furthermore is zero definable
in an ω-categorical structure. Therefore a definable equivalence relation can have
only finitely many classes. So every class appears in M and we can find such a b0.

Now since the map is a homeomorphism we are done. �

Proposition 2. Aut (algcleq (∅)) is the largest compact quotient of G.

Exercise 1. Show this.

Proposition 3. Given any metrizable profinite group Γ, there is an ω-categorical
M with Aut (algcleq (∅)) ' Γ.

Proposition 4. If Γ is profinite and has infinitely many open subgroups of index

n, then it has 22
ℵ0

many subgroups of finite index.

The point is that there is nothing we can say about this compact quotient, so
for the sip we have to ignore this. Note that one can ask what conditions we need
to add for the converse to hold. There is a theorem which says:

Theorem 1 (Nikolov-Segal). If Γ is profinite and topologically finitely generated,
then finite index subgroup are open.

This is surprising because it uses the classification theorem for finite simple
groups. The other known example hides the problem with the quotient inside the
classes.

Example 2. Consider the counterexample in example 1. Now add an equivalence
relation with infinitely many classes, and put a copy of the previous thing in each
class. This has no algcleq (∅) and therefore no compact quotient.

3. Polish spaces

Definition 3. A Polish space is a topological space which is separable and com-
pletely metrizable.

Example 3. The following are all example: R, C, (0, 1), I = [0, 1], countable
discrete sets, C = 2N (Cantor space), H = IN (Hilbert cube), and W = NN (Baire
space).

Exercise 2. Show that Baire space is homeomorphic to R \Q.

In general the countable product of Polish spaces is Polish because of the fol-
lowing. Given X Polish, there is a compatible complete metric bounded by 1 by
truncation. To put a metric d on the product∏

i<ω

Xi
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we take the metric di on each Xi, and then just define

d (x, y) =
∑
i

di (xi, yi)

2n
.

Lemma 2. A compact Hausdorff space X is Polish iff it is metrizable iff it is
second-countable.

Note there are some nice universality properties that won’t be useful for us, but
are worth mentioning.

Proposition 5. Every Polish space is homeomorphic to a subset of the Hilbert
cube.

Proof. Let X be Polish, and let (xn) be a countable dense subset. Let d be
a compatible metric bounded by 1. Define a map f : X → H where x 7→
(d (x, xn) |n < ω). f is injective because x is a limit of a sequence of xns, so if
x and y have the same distance then they are the limits of the same sequence. f
is also continuous. This comes down to an argument on one coordinate. To check
that f−1 : f (X) → X is continuous, assume that f (xm) converges to f (x). This
means d (xm, xn) converges to f (x, xn) for each n. Fix ε > 0 and let n be such that
d (x, xn) < ε. then d (xm, xn) < 2ε for n large enough such that d (xm, x) < 3ε. �

Exercise 3. Show that you can embed any Polish space X as a closed subspace of
RN.

In general, the result might not be closed, but it can at least be Gδ.

Definition 4. A set is Gδ if it is the countable intersection of open sets, and Fσ if
it is the countable union of closed sets.

The Borel sets comprise the smallest σ algebra4 containing open sets.

Proposition 6. Let X be Polish with Y ⊆ X. Y is Polish iff it is Gδ.

Proof. (⇐=): Closed subsets of Polish spaces are Polish. If we take an open subset,
then we can change the metric such that it blows up at the boundary. If U ⊆ X is
open, define a metric dU on U by setting

dU (x, y) = d (x, y) +

∣∣∣∣ 1

d (x,X \ U)
− 1

d (y,X \ U)

∣∣∣∣ .
This way, if we take a sequence converging to the boundary, it can’t be Cauchy
and not convergent. This gives us completeness. Then dU is a complete compatible
metric on U .

Separability follows from being a subspace. If it is Gδ,

Y =
⋂
i<ω

Ui

for some open Uis. Now we can truncate distances at 1 and take the sum

dY =
∑
i

min (1, dUi
(x, y))

2i

so we are done.
We will not show the other direction. �

4Recall a σ-algebra is defined to contain the whole space, and be closed under complements
and countable unions. As such it is also closed under countable intersections.
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