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1. Descriptive set theory

We will continue with our crash course in descriptive set theory.

1.1. Polish spaces.

Corollary 1. Polish spaces are precisely the Gδ subspaces of W .

Then we have an analogous result:

Proposition 1. • Every perfect1 Polish space has a subspace homeomorphic
to the cantor set C.
• If X is a compact polish space then there is a co-continuous surjective map
C → X. The idea is that the cantor set is universal among compact polish
spaces.

Sketch proof. Let X be perfect Polish. Pick two points, pick two disjoint open sets
containing them. These are not isolated so we can break these into two again. Now
we can continue this process with decreasing radius of the balls going to 0. Then
we get a homeomorphic embedding.

In the second part, since X is compact we can cover it by finitely many balls
possibly not disjoint. And then we’re naturally constructing a surjective map from
the finite tree to X, and then we check that this is just homeomorphic to C. �

A compact space X is polish iff metrizable iff second countable. Note this is not
equivalent to separable.

Example 1 (Counter-example). [0, 1]
[0,1]

is compact, separable, and not second
countable.

Let X be Polish. Define K (X) to consist of the compact subspaces of X with
the Vietoros topology. The base is given by

{K ⊆ X | ∃U0, · · · , Un ⊆ X s.t. K ⊆ U0,K ∩ U1 6= ∅, · · · ,K ∩ Un 6= ∅} .
This is metrizable. In particular this is given by the Hausdorff metric. Define

dH (K,L) =


0 K = L = ∅
1 K = ∅ 6= LorL = ∅ 6= K

max {δ (K,L) , δ (L,K)} K,L 6= ∅

Date: March 14, 2019.
1Recall this means it has no isolated points.
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where

δ (K,L) := sup
x∈K

d (x, L) .

Then it is a fact that this metric gives the above topology. In fact, if D ⊆ X is
dense,

Kf (D) = {K ⊆ D,K finite}
is dense in K (X), so K (X) is Polish.

1.2. Baire category. Let X be a topological space.

Definition 1. A set A ⊆ X is nowhere dense if A has empty interior.

(1) A set A ⊆ X is meager (a first category) if A = ∪An where An is nowhere
dense (equivalently, A ⊆ ∪Fn, Fn ⊆ X closed with empty interior).

(2) A ⊆ X is comeager if X \A is meager2 (equivalently A contains a countable
intersection of dense opens).

Definition 2. The space X is Baire if any of the following equivalent conditions
are satisfied:

(i) Every nonempty open set is non-meager.
(ii) A meager set has empty interior.

(iii) Every comeager set is dense.
(iv) Intersection of countably many dense open sets is dense.

Theorem 1. Every completely metrizable space is Baire. Every locally compact
Hausdorff space is Baire.

Proof. Consider a countable intersection of dense open sets⋂
n<ω

Un .

Take a ball in U1 of radius < 1. Then take a ball of radius < 1/2 in U2, and
continue in this fashion. Then what we get is a point in the intersection of the open
sets. �

In a Baire space, meager sets form a σ-ideal. This means the collection of these
is closed under taking subsets, countable unions, and doesn’t contain the whole
space.3 The idea is that this gives a notion of smallness. Meager sets somehow
have measure 0, non-meager somehow have positive measure, and co-meager sets
have measure 1.

We will say that a property holds generically if it holds on a comeager set. We
write ∀∗xP (x) to mean that P holds generically, and ∃∗xP (x) means {x |P (x)}
is non-meager.

Definition 3. A set A ⊆ X has the Baire property (BP) if A4U is meager for
some open U . The notation is that A =∗ U .

Proposition 2. The class of subsets of X which have BP is a σ-algebra.

2This is also called residual.
3Recall this is different from a σ-algebra because, first of all, a σ-algebra must contain the

whole space, and it is closed under countable unions, but also complements, which implies it is

closed under countable intersections as well.
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Proof. Recall this means it is closed under complements, countable unions, and
countable intersections. Note that for open U we have U =∗ U and for closed F
we have F =∗ int (F ). If A has BP, then A =∗ U for some U , and then

X \A =∗ X \ U =∗ int (X \ U) .

If An =∗ Un then ⋃
n

An =∗
⋃
n

Un

so we are done. �

Notice that every Borel set has BP (recall the Borel sets comprise the smallest
σ-algebra containing all open sets).

Lemma 1. If A has BP then we can write

G ⊆ A ⊆ F

such that G is a Gδ set, and F is an Fσ set such that F \G is meager.

Proof. A =∗ U for some open U , which means A4U ⊆ F , where F is closed and
meager. So G = U \ F is Gδ, G ⊆ A, and A \G ⊆ F is meager. Now we can apply
this to the complement X \A to get the Fσ set. �

Definition 4. A function f : X → Y is Baire-measurable if the preimage of any
open set has BP.

Now we have some sort of Fubini property.

Theorem 2 (Kuratowski-Ulam). Let X and Y be second countable topological
spaces. If A ⊆ X × Y then

(i) ∀∗x Ax = {y : A (x, y)} has BP.
(ii) A is meager iff ∀∗x,Ax is meager.

(iii) A is comeager iff ∀∗xAx is comeager.

We said this is some sort of Fubini property because this can be rewritten as

∀ (x, y)A (x, y) ⇐⇒ ∀∗x∀∗yA (x, y) ⇐⇒ ∀∗y∀∗xA (x, y) .

Theorem 3. If X is perfect Polish and E ⊆ X2 is a meager equivalence relation
then

|X/E| = 2ℵ0

and in fact there is a cantor set C ⊆ X which is transversal.

1.3. Analytic sets.

Definition 5. If X is Polish, a subset A ⊆ X is analytic if there is Y Polish and
f : Y → X continuous with f (Y ) = A.

We say A ⊆ X is co-analytic if X \A is analytic.

Theorem 4. If X is Polish, then

• Every analytic (and hence co-analytic) set has BP.
• A set A ⊆ X is Borel iff it is both analytic and co-analytic.
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2. Polish groups

Recall the following. A topological group is a group G equipped with a topology
so that the map G2 → G which sends (x, y) 7→ xy−1 is continuous. If G is a
topological group and H ⊆ G is an open subgroup, then H is closed.

Definition 6. A Polish group is a topological group whose topology is Polish.

Theorem 5 (Birkhoff-Kakutani). Let G be a topological group. Then G is metriz-
able iff there is a countable basis of a neighborhood of 1. In this case there is a
left-invariant compatible metric.

To be clear, left-invariant means that d (x, y) = d (gx, gy).

Remark 1. It is important that we define a Polish group as a topological space
rather than a metric space. Since it is polish there is always a complete metric,
and then by the theorem there is always this second left-invariant metric. But in
general there is no complete invariant metric. If it is locally compact this does exist
(like for R).

Proposition 3. Let G be a Polish group and let H ≤ G. Then H is Polish iff H is
Gδ. This is also equivalent to H being closed. In this case G/H is a Polish space,
and in particular a Polish group if H / G.

Proof. We prove only the second (⇐⇒ ). Let H ≤ G be Gδ and assume G = H.
Then H is a dense Gδ set, and so is every coset of H. However we cannot have two
disjoint comeager sets which means there is only one coset so H = G. �

Theorem 6 (Pettis). Let G be a topological group with non-meager A ⊆ G having
BP. Then A−1A contains a neighborhood of 1.

Proof. We know that for some open U we have A =∗ U . Then we have g ∈ G and
1 ∈ V for V open such that gV V −1 ⊆ U . Therefore gV ⊆ U ∩Uh for h ∈ V . Then
we claim V ⊆ A−1A. Let h ∈ V . Then we have

(U ∩ Uh)4 (A ∩Ah) ⊆ (A4A) ∪ ((U4A)h)

which means
A ∩Ah =∗ U ∩ Uh

and now U ∩ Uh contains a neighborhood of the identity, so it is nonempty, and
even has nonempty interior so A ∩Ah 6= ∅ as well.

Let x ∈ A ∩ Ah. So x ∈ A and x = yh for some y ∈ A. Then y−1x = h ∈
A−1A. �
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