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1. ω-categorical structures

Definition 1. A countable1 structureM is said to be ω-categorical if every (count-
able) structure N which is elementarily equivalent to M is actually isomorphic to
M.

Theorem 1 (Ryll-Nardzewski). Let M be a countable structure, then TFAE:

(i) M is ω-categorical.
(ii) For every n < ω there are only finitely many 0-definable subsets of Mn.

(iii) For every n < ω there are only finitely many n-types over ∅ realized in M .
(iv) For every n < ω, the group Aut (M) has only finitely many orbits on each

Mn. In this case we say Aut (M) is oligomorphic, or the action is oligo-
morphic.

Proof. The difficult part is relating the first to the rest. This uses the theory of
omitting types, so we won’t prove this part.

(ii) ⇐⇒ (iii) : If there are only finitely many 0-definable subsets of Mn, then
n-types are just ultrafilters in the boolean algebra of definable sets, so the result
is immediate. Conversely, if there are only finitely many n-types over ∅ realized
in M , then a definable set is completely characterized by the types it contains so
there must be finitely many 0-definable subsets of Mn as well.

(iii) ⇐⇒ (iv): For any M , if a, b ∈ Mn are in the same orbit under Aut (M)
they have the same type. The converse is false in general, but true if M is ho-
mogeneous, (it is sometimes even defined in this way) and also true if M is ω-
categorical. �

Exercise 1. Show that if M is ω-categorical, then a is in the algebraic closure of
A iff a has a finite orbit under

Aut (M/A) = {σ ∈ Aut (M) | σ|A = idA} .
Show that:

(1) D ⊆Mn is definable iff D is preserved set-wise by all σ ∈ Aut (M) .

Finally show that property (1) is equivalent to being ω-categorical.

Remark 1. Note that it is always true that if a subset D is definable then it is
preserved. Often times in a first course on model theory a way to prove that a subset
is definable is to find an automorphism which doesn’t preserve it. The content of
the exercise is then to show that the converse is true iff M is ω-categorical.
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1All of our structures will be countable in this class.
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The point here is that if we’re working with an ω-categorical structure, we can
forget about model theory and just think of this as a set with a group acting on
it, and then model theoretic properties can just be expressed as properties of the
automorphism group.

2. Automorphism group

Definition 2. A permutation group is a group G equipped with a faithful action
G

�

X on some set X. I.e. there is an embedding G ↪→ Sym (X).

Example 1. Aut (M)

�

M is a permutation group.

In general, Aut (M) carries little information about M as in the following exam-
ple:

Example 2. (N,≤) and (N,+,×) both have Aut (M) = {id} yet they are totally
different structures.

However, if M is ω-categorical one can almost recover the structure on M from
Aut (M) as a permutation group. This works as follows. In general, if G

�

X
is a permutation group, we can define a canonical structure on X, by adding an
n-ary relation symbol for each G-orbit on Xn. Let XG be this structure, then
G ≤ Aut

(
XG

)
by construction. In fact, this is almost equality. Clearly it is not

in general: if the group is trivial, this would mean there is a new symbol for every
element, so this can not be equality.

To understand the sense in which is this is almost equality, we need a topology
on Sym (X). This is induced by the product topology on XX . More explicitly, a
basic open set is given by finitely many point and their images:{

σ ∈ Sym (X) | ∃a, b ∈ Xn s.t. σ (a) = b
}
.

Proposition 1. Aut
(
XG

)
is the closure of G with respect to this topology.

Proof. ⊆: Let σ ∈ Aut
(
XG

)
, and a, b ∈ Xn such that σ (a) = b. Now we just have

to find g ∈ G such that g (a) = b. Since σ is an automorphism, a, b satisfy the same
relation and are therefore in the same orbit.
⊇: This is essentially the same argument. �

So what we have seen so far, is that given a group acting on a set we have this
canonical structure given by the group, and then the automorphism group of this
structure is the closure of the group itself. Of course, in general, if we start with
a structure, look at its automorphism group and build the canonical structure, we
don’t have something that is remotely related to what we started with. We saw
this in the example before. If start with a structure with no automorphisms, then
the canonical structure will just have a name for every point and nothing else, so
you’re losing the whole structure. But if G acts oligomorphically, then you actually
recover the structure, but the language has obviously changed. The notion that the
two structures are somehow the same is captured by the following definition.

Definition 3. Two structures M,M ′ on the same underlying set are interdefinable
if they have the same 0-definable sets.

Remark 2. For this course, and generally in many cases, two interdefinable struc-
tures are effectively the same.
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Proposition 2. If G

�

X is oligomorphic, then there is, up to interdefinability, a
unique structure on X such that G is dense in the automorphism group.

Proof. We just have to prove uniqueness. More specifically, let X0 be a struc-
ture on X such that G is dense in Aut (X0). Then for each n, there are finitely
many Aut (X0)-orbits on Xn, hence finitely many n-types in X0, hence finitely
many 0-definable subsets of Xn which coincide with those orbits. Therefore X0 is
interdefinable with XG. �

If G does not act oligomorphically, the issue is that there are, in general, invariant
sets which are not definable.

Now we understand that if we look at the automorphism group as a permutation
group, this exactly amounts to knowing the structure up to interdefinability. The
next step, is to consider the automorphism group as a topological group. So imagine
we’re given the group with its topology, but not its action. Then we might wonder
how much of M we can recover. In general, of course, nothing. But as it turns
out we can recover a great deal about the structure in the ω-categorical case. In
particular, we can recover it up to bi-interpretability, a concept which we introduce
now.

Definition 4. An interpretation over2 ∅ of a structure N in a structure M is given
by

(1) a 0-definable subset D ⊆Mn for some n,
(2) a 0-definable equivalence relation E on D,
(3) and a bijection f : D/E → N ,

such that the preimage under f ◦ π, where π : D → D/E, of a 0-definable set of
Nk (for any k) is 0-definable in M .

Remark 3. Note that this isn’t asking for the converse, it might have many more
0-definable sets, but at least it has these.

Example 3. (Q,+, ·) is interpretable in (N,+, ·).
Definition 5. Two interpretations f and g of N in M are homotopic if the set
f = g (a subset of Df/Ef ×Dg/Eg) is 0-definable in M .

Example 4. Let M0 = (ω,=) for ω some infinite set, and M =
(
ω2, E1, E2

)
where

E1 is equality in the first coordinate, and E2 is equality on the second coordinate.
The two natural interpretations of M0 in M , given by quotienting M/E1 and M/E2,
are not homotopic as there is no definable bijection between M/E1 and M/E1. If
however, we had take M2

0 , so remembering not only the equivalence relation of
coordinates, but also we can somehow match between coordinates, then they would
be homotopic.

Definition 6. A bi-interpretation between M and N is given by two interpretations
f : M → N and g : N → M such that f ◦ g is homotopic to idM , and g ◦ f is
homotopic to idN .

Example 5. We saw that M0 was interpretable in M in two completely different
ways, and of course M is interpretable in M0, but these two structures are not
bi-interpretable. We won’t prove this, but we will at least see that if we try to do

2If we want to allow parameters, we can think of it as adding constants to the language, but
we will not deal with parameters right now.
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it neively, it doesn’t work. If we compose f : M/E1 → M0 and g : M2
0 → M then

we get g ◦ f : (M/E1)
2 →M which is not definable in M .

Remark 4. There exists a bi-interpretation between M and N iff M eq and N eq are
interdefinable.

For almost anything we care about, two structures being bi-interpretable will
mean they are effectively the same, though a bit ‘less the same’ than two interde-
finable structures.

Theorem 2. Let M and N be ω-categorical. Then Aut (M) and Aut (N) are
homeomorphic iff M and N are bi-interpretable.

Proof. (⇐=): Let M and N be bi-interpretable. Note that an interpretation f of
N in M gives a map Aut (f) : Aut (M) → Aut (N) which is continuous. To see
that this is continuous, we need to show that the preimage of a basic open set is
open. If we have an automorphism with an image which sends a finite tuple to a
finite tuple, then there is a finite part of that automorphism which already does
this. But this is true because every finite tuple of elements of N is represented as
a finite tuple of elements of M , so we just take any preimage, and the image of the
automorphism in that preimage is enough. This is also functorial, i.e. if f : M → N
and g : N → P are interpretations, then

Aut (g ◦ f) = Aut (g) ◦Aut (f) .

This is essentially immediate from the definitions.
Two interpretations f and g are homotopic iff Aut (f) = Aut (g). We just prove

the forward implication. The idea is that the set f = g is a 0-definable set, so it is
preserved by the automorphisms. For simplicity, let f : M

∼−→ N and g : N
∼−→M .

If we take σ ∈ Aut (M) and a ∈ N , the pair
(
f−1 (a) , g−1 (a)

)
is in the set f = g,

so
(
σf−1 (a) , σg−1 (a)

)
is in f = g which by the definition of the set f = g implies

fσf−1 (a) = gσg−1 (a).
If f and g give a bi-interpretation then this implies Aut (f) ◦Aut (g) = idAut(N)

and Aut (g) ◦Aut (f) = idAut(M) and these are continuous, so homeomorphic.
( =⇒ ):

Claim 1. If ϕ : Aut (M) → Aut (N) is continuous and imϕ has finitely many
orbits on N , then ϕ is of the form Aut (f) for f an interpretation of N in M .

Proof. Choose representatives b1, · · · , bk of the orbits of the image in N . Then
we can find a1, · · · , am ∈ M such that Aut (M/ {a1, · · · , am}) is mapped into
Aut (N/ {b1, · · · , bk}). (Note the ai exist by continuity.) WLOG assume m ≤
k. Let D ⊆ Mn+1 consist of the conjugates of the k elements (a1, a1, · · · , am),
(a2, a1, · · · , am), · · · , (ak, a1, · · · , am). Note that this is a 0-definable set. Now we
can define f : D → N by

f (σ (ai) , σ (a1) , · · · , σ (am)) = ϕ (σ) bi

for i ∈ {1, · · · , k} and σ ∈ Aut (M). First we need to check that this is well-
defined. Assume there are two representatives of the same element, then first
the i must be the same, and second this means there are two automorphisms σ
and τ with the same image in the a1, · · · , am, but since Aut (M/ {a1, · · · , am})→
Aut (N/ {b1, · · · , bk}) this means that σ and τ would have to have the same image
on the b1, · · · , bk. Now we have to check that two things don’t get sent to the same
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thing, but the equality is a 0-definable set. Also, any 0-definable set in N is mapped
to a 0-definable set in M . Since M and N are both ω-categorical, this amounts to
saying that invariant sets map to invariant sets. This is an interpretation of N in
M , and by construction, Aut (f) = ϕ. We hit the entirety of M , because the bis
are representative of all of the orbits. �

To be continued. . .

�
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