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We will continue trying to prove the sip via proving ample generics. What we’re
aiming at, which we may or may not get to today is a characterization of having
ample generics.

Recall last week we had a criterion for having a dense conjugacy class. Now we
want to upgrade this to a criterion for having a comeager class.

1. Comeager conjugacy class

1.1. Topological lemmas. Fix G
�

X polish.

Definition 1. We say x ∈ X is G-big if Ux ⊆ X is somewhere dense for any
1 ∈ U ⊆ G, i.e. int

(
Ux
)
6= ∅ for any such U .

This will turn out to be equivalent to having comeager orbit.
Fix a left-invariant metric on G. Recall that since G is polish it has a complete

metric and a left-invariant metric. It is somehow rare that these coincide. This
is impossible for S∞, and in general if the left-invariant metric is not also right-
invariant it cannot be complete. In any case, we can take the left-invariant metric
d and then

d (x, y) = d
(
x−1, y−1

)
is complete.

For x ∈ X, let
(x)<ε = Bε (1) · x

be the open ball of radius ε (wrt d) around 1 in G. Similarly if V ⊆ X,

(V )<ε = Bε (1) · V .

Lemma 1. (1) For all A ⊆ X, ε > 0,(
A
)
<ε
⊆ (A)<ε

and (
int
(
A
))
<ε
⊆ int

(
(A)<ε

)
.

(2) If x ∈ X is G-big, then

x ∈ int
(

(x)<ε

)
for all ε > 0.

Proof. (1): Let x ∈
(
A
)
<ε

and U 3 x. Then we need to show U intersects
(
A
)
<ε

.

This is equivalent to showing that (U)<ε intersects A. In fact, we have a distance
function on X, which is

d (x, y) = inf (d (g, 1) | gx = y)
1
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and (A)<ε is an ε-neighborhood for this distance. In particular we have d (x, y) =

d (y, x) since d (g, 1) = d
(
1, g−1

)
. Now we certainly have (U)<ε ∩A 6= ∅, and being

open this means,

(U)<ε ∩A 6= ∅
which is equivalent to

U ∩ (A)<ε 6= ∅
so we are done.

We skip the next part.

(2): Let x ∈ X be G-big. Then int
(

(x)<ε

)
6= ∅, so

V ∩ (x)<ε 6= ∅

so x ∈ (V )<ε and

(V )<ε ⊆
(

int
(

(x)<ε

))
<ε
⊆ 1 int

(
(x)<ε

)
�

Definition 2. A set W ⊆ X is ε-small if for any two nonempty open subsets
U1U2 ⊆W we have

(U1)<ε ∩ U2 6= ∅ .

Lemma 2. Suppose that for every ε > 0 the union of all ε-small open subsets of
X is dense. Then the set of G-big x ∈ X is comeager.

Proof. For {Vn |n < ω} a countable basis of X. For all n,m < ω, by hypothesis,
Vn intersects some 1/m-small open set. Let ∅ 6= Wn,m ⊆ Vn be 1/m small. For
m < ω, let

Wm =
⋃
n<ω

Wn,m .

Then Wm is open, dense in X. Let

Dn,m =
⋂{

(Vk)<1/m |Vk ⊆Wn,m

}
.

Then Dn,m is comeager in X in Wn,m, as each (Vk)<1/m is dense open in Wn,m.

Let

Dm =
⋃
n<ω

Dn,m

so Dm ⊆ Wm and Dm is comeager in Wm. Since Wm is dense open we have that
Dm is comeager in X. Finally, let

D =
⋂
m<ω

Dm

so D is comeager.
Finally we show if x ∈ D, then x is G-big. Fix ε > 0, then we want to show

int
(

(x)<ε

)
6= ∅. Take ε = 1/m, x ∈ Dn,m for some n < ω. So x ∈ (Vk)<1/m for all

k such that Vk ⊆Wn,m, so in fact

Vk ∩ (x)<1/m 6= ∅

1By (1).
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for all k such that Vk ⊆ Wn,m. Therefore (x)<1/m is dense in Wn,m so Wn,m ⊆

int
(

(x)1/m

)
. �

Lemma 3. Let x ∈ X be G-big. Then the action is topologically transitive iff G · x
is dense.

Proof. (⇐=): Clear.
( =⇒ ): Let V = int

(
G · x

)
. x being G-big means U · x is somewhere dense, i.e.

G · x is somewhere dense, i.e. V is nonempty. Then V is G-invariant, but now the
action is topologically transitive, so for every U there is V such that g (V ∩ U) 6= ∅,
so V is dense, so G · x is dense. �

The conclusion is the following.

Lemma 4. Suppose G

�

X is topologically transitive. Then TFAE:

(i) For every ε the union of ε-small open sets is dense.
(ii) The set of G-big points is comeager.

(iii) There is a G-big point.

Proof. (iii) =⇒ (i): Let x ∈ X be G-big. Note that for any y ∈ X, (y)<ε is 2ε

small because of the following. For U, V ⊆ (y)<ε then U , V both intersect (y)<ε so
their distance is at most 2ε.

Note also that if x is G-big, so is any point in any point in G ·x. By assumption
G · x is dense, so ⋃

y∈G·x
int
(

(y)ε/2

)
is dense in X. �

So now we’ve found a collection of dense points, and now we see when they are
actually an orbit.

Lemma 5. If x, y ∈ X are both G-big and y ∈ int
(
G · x

)
, then Y ∈ G · x.

Proof. Let x, y be G-big, y ∈ int
(
G · x

)
. We will construct points gn ∈ G and open

symmetric neighborhoods 1 ∈ Un ⊆ G such that

(1) g−12n y ∈ int
(
U2nx

)
(2) g2n+1 ∈ g2nU2n

(3) g2n+1x ∈ int
(
U2n+1y

)
(4) g2n+2 ∈ U2n+1g2n+1

(5) g−12n U2n+1g2n ⊆ U2n

(6) g2n+1U2n+2g
−1
2n+1 ⊆ U2n+1

(7) For n ≥ 1, if h ∈ U3
n ⊇ Un, then d (1, n) < 2−(n+1).

(8) The set int
(
U2n+1y

)
is included in a closed ball of radius < 1/n around g.

The last two are somehow saying Un is small, and the others are somehow saying
that we are getting closer. If we succeed, then (gn)n<ω is a Cauchy sequence with
limit g∗ and items 3 and 8 imply that g∗x = y. To show this is Cauchy it is enough
to show

d (gn, gn+1) < 2−n d
(
g−1n , g−1n+1

)
< 2−n .
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Say n = 2k + 2. Then g−1n gn+1 ∈ Un by item 2 so

d (gn, gn+1) = d
(
1, g−1n gn+1

)
< 2−(n+1)

by item 7. Then
gng
−1
n+1 = gn

(
g−1n+1gn

)
g−1n

and
gn = u′gn+1

for u′ ∈ Un−1 by item 4. So

gn (gn+1)
−1

= u′gn−1
(
g−1n+1gn

)
(gn−1)

−1
(u′)

−1
.

Then we know g−1n+1gn ∈ Un, and by item 6 we have gn−1
(
g−1n+1gn

)
(gn−1)

−1 ∈ Un−1
and therefore gng

−1
n+1 ∈ U3

n−1. So finally

d
(
g−1n , g−1n+1

)
= d

(
1, gng

−1
n+1

)
< 2−n .

The argument is similar for n odd, but we would use items 2 and 5 instead of
items 3 and 6.

It remains to construct the gns and Uns. Set g0 = 1 and U0 = G. Note item 1
holds by assumption. Now assume we have g2n and U2n. For any open V ,

y ∈ g2n · int
(
U2nx

)
∩ int

(
V y
)

so
int
(
V y
)
∩ g2nU2nx 6= ∅

so
int
(
V y
)
∩ g2nU2nx 6= ∅ .

Now take U2n+1 so that items 5, 7 and 8 hold and pick g2n+1 ∈ g2nU2n such that
g2n+1x ∈ int

(
U2n+1y

)
, i.e. items 2 and 3 hold. This can be done for any choice of

U2n+1.
Now we take U2n+2 and g2n+2 similarly using the fact that x is G-big. �
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