LECTURE 20
 MATH 229

LECTURE: PROFESSOR PIERRE SIMON

NOTES: JACKSON VAN DYKE

We will continue trying to prove the sip via proving ample generics. What we're aiming at, which we may or may not get to today is a characterization of having ample generics.

Recall last week we had a criterion for having a dense conjugacy class. Now we want to upgrade this to a criterion for having a comeager class.

1. Comeager conjugacy class

1.1. Topological lemmas. Fix $G \bigcirc X$ polish.

Definition 1. We say $x \in X$ is G-big if $U x \subseteq X$ is somewhere dense for any $1 \in U \subseteq G$, i.e. $\operatorname{int}(\overline{U x}) \neq \emptyset$ for any such U.

This will turn out to be equivalent to having comeager orbit.
Fix a left-invariant metric on G. Recall that since G is polish it has a complete metric and a left-invariant metric. It is somehow rare that these coincide. This is impossible for S_{∞}, and in general if the left-invariant metric is not also rightinvariant it cannot be complete. In any case, we can take the left-invariant metric d and then

$$
d(x, y)=d\left(x^{-1}, y^{-1}\right)
$$

is complete.
For $x \in X$, let

$$
(x)_{<\epsilon}=B_{\epsilon}(1) \cdot x
$$

be the open ball of radius ϵ (wrt d) around 1 in G. Similarly if $V \subseteq X$,

$$
(V)_{<\epsilon}=B_{\epsilon}(1) \cdot V .
$$

Lemma 1. (1) For all $A \subseteq X, \epsilon>0$,

$$
(\bar{A})_{<\epsilon} \subseteq \overline{(A)_{<\epsilon}}
$$

and

$$
(\operatorname{int}(\bar{A}))_{<\epsilon} \subseteq \operatorname{int}\left(\overline{(A)_{<\epsilon}}\right)
$$

(2) If $x \in X$ is G-big, then

$$
x \in \operatorname{int}\left(\overline{(x)}_{<\epsilon}\right)
$$

for all $\epsilon>0$.
Proof. (1): Let $x \in(\bar{A})_{<\epsilon}$ and $U \ni x$. Then we need to show U intersects $(\bar{A})_{<\epsilon}$. This is equivalent to showing that $(U)_{<\epsilon}$ intersects \bar{A}. In fact, we have a distance function on X, which is

$$
\bar{d}(x, y)=\inf (d(g, 1) \mid g x=y)
$$

and $(A)_{<\epsilon}$ is an ϵ-neighborhood for this distance. In particular we have $\bar{d}(x, y)=$ $\bar{d}(y, x)$ since $d(g, 1)=d\left(1, g^{-1}\right)$. Now we certainly have $(U)_{<\epsilon} \cap \bar{A} \neq \emptyset$, and being open this means,

$$
(U)_{<\epsilon} \cap A \neq \emptyset
$$

which is equivalent to

$$
U \cap(A)_{<\epsilon} \neq \emptyset
$$

so we are done.
We skip the next part.
(2): Let $x \in X$ be G-big. Then int $\left(\overline{(x)_{<\epsilon}}\right) \neq \emptyset$, so

$$
V \cap(x)_{<\epsilon} \neq \emptyset
$$

so $x \in(V)_{<\epsilon}$ and

$$
(V)_{<\epsilon} \subseteq\left(\operatorname{int}\left(\overline{(x)_{<\epsilon}}\right)\right)_{<\epsilon} \subseteq{ }^{1} \operatorname{int}\left(\overline{(x)_{<\epsilon}}\right)
$$

Definition 2. A set $W \subseteq X$ is ϵ-small if for any two nonempty open subsets $U_{1} U_{2} \subseteq W$ we have

$$
\left(U_{1}\right)_{<\epsilon} \cap U_{2} \neq \emptyset .
$$

Lemma 2. Suppose that for every $\epsilon>0$ the union of all ϵ-small open subsets of X is dense. Then the set of G-big $x \in X$ is comeager.

Proof. For $\left\{V_{n} \mid n<\omega\right\}$ a countable basis of X. For all $n, m<\omega$, by hypothesis, V_{n} intersects some $1 / m$-small open set. Let $\emptyset \neq W_{n, m} \subseteq V_{n}$ be $1 / m$ small. For $m<\omega$, let

$$
W_{m}=\bigcup_{n<\omega} W_{n, m}
$$

Then W_{m} is open, dense in X. Let

$$
D_{n, m}=\bigcap\left\{\left(V_{k}\right)_{<1 / m} \mid V_{k} \subseteq W_{n, m}\right\} .
$$

Then $D_{n, m}$ is comeager in X in $W_{n, m}$, as each $\left(V_{k}\right)_{<1 / m}$ is dense open in $W_{n, m}$. Let

$$
D_{m}=\bigcup_{n<\omega} D_{n, m}
$$

so $D_{m} \subseteq W_{m}$ and D_{m} is comeager in W_{m}. Since W_{m} is dense open we have that D_{m} is comeager in X. Finally, let

$$
D=\bigcap_{m<\omega} D_{m}
$$

so D is comeager.
Finally we show if $x \in D$, then x is G-big. Fix $\epsilon>0$, then we want to show $\operatorname{int}\left(\overline{(x)_{<\epsilon}}\right) \neq \emptyset$. Take $\epsilon=1 / m, x \in D_{n, m}$ for some $n<\omega$. So $x \in\left(V_{k}\right)_{<1 / m}$ for all k such that $V_{k} \subseteq W_{n, m}$, so in fact

$$
V_{k} \cap(x)_{<1 / m} \neq \emptyset
$$

[^0]for all k such that $V_{k} \subseteq W_{n, m}$. Therefore $(x)_{<1 / m}$ is dense in $W_{n, m}$ so $W_{n, m} \subseteq$ $\operatorname{int}\left(\overline{(x)_{1 / m}}\right)$.

Lemma 3. Let $x \in X$ be G-big. Then the action is topologically transitive iff $G \cdot x$ is dense.

Proof. (\Longleftarrow) : Clear.
$(\Longrightarrow):$ Let $V=\operatorname{int}(\overline{G \cdot x}) . x$ being G-big means $U \cdot x$ is somewhere dense, i.e. $G \cdot x$ is somewhere dense, i.e. V is nonempty. Then V is G-invariant, but now the action is topologically transitive, so for every U there is V such that $g(V \cap U) \neq \emptyset$, so V is dense, so $G \cdot x$ is dense.

The conclusion is the following.
Lemma 4. Suppose $G \subset X$ is topologically transitive. Then TFAE:
(i) For every ϵ the union of ϵ-small open sets is dense.
(ii) The set of G-big points is comeager.
(iii) There is a G-big point.

Proof. $($ iii $) \Longrightarrow(i)$: Let $x \in X$ be G-big. Note that for any $y \in X, \overline{(y)_{<\epsilon}}$ is 2ϵ small because of the following. For $U, V \subseteq \overline{(y)_{<\epsilon}}$ then U, V both intersect $(y)_{<\epsilon}$ so their distance is at most 2ϵ.

Note also that if x is G-big, so is any point in any point in $G \cdot x$. By assumption $G \cdot x$ is dense, so

$$
\bigcup_{y \in G \cdot x} \operatorname{int}\left(\overline{(y)_{\epsilon / 2}}\right)
$$

is dense in X.
So now we've found a collection of dense points, and now we see when they are actually an orbit.

Lemma 5. If $x, y \in X$ are both G-big and $y \in \operatorname{int}(\overline{G \cdot x})$, then $Y \in G \cdot x$.
Proof. Let x, y be G-big, $y \in \operatorname{int}(\overline{G \cdot x})$. We will construct points $g_{n} \in G$ and open symmetric neighborhoods $1 \in U_{n} \subseteq G$ such that
(1) $g_{2 n}^{-1} y \in \operatorname{int}\left(\overline{U_{2 n} x}\right)$
(2) $g_{2 n+1} \in g_{2 n} U_{2 n}$
(3) $g_{2 n+1} x \in \operatorname{int}\left(\overline{U_{2 n+1} y}\right)$
(4) $g_{2 n+2} \in U_{2 n+1} g_{2 n+1}$
(5) $g_{2 n}^{-1} U_{2 n+1} g_{2 n} \subseteq U_{2 n}$
(6) $g_{2 n+1} U_{2 n+2} g_{2 n+1}^{-1} \subseteq U_{2 n+1}$
(7) For $n \geq 1$, if $h \in U_{n}^{3} \supseteq U_{n}$, then $d(1, n)<2^{-(n+1)}$.
(8) The set $\operatorname{int}\left(\overline{U_{2 n+1} y}\right)$ is included in a closed ball of radius $<1 / n$ around g.

The last two are somehow saying U_{n} is small, and the others are somehow saying that we are getting closer. If we succeed, then $\left(g_{n}\right)_{n<\omega}$ is a Cauchy sequence with limit g_{*} and items 3 and 8 imply that $g_{*} x=y$. To show this is Cauchy it is enough to show

$$
d\left(g_{n}, g_{n+1}\right)<2^{-n} \quad d\left(g_{n}^{-1}, g_{n+1}^{-1}\right)<2^{-n}
$$

Say $n=2 k+2$. Then $g_{n}^{-1} g_{n+1} \in U_{n}$ by item 2 so

$$
d\left(g_{n}, g_{n+1}\right)=d\left(1, g_{n}^{-1} g_{n+1}\right)<2^{-(n+1)}
$$

by item 7 . Then

$$
g_{n} g_{n+1}^{-1}=g_{n}\left(g_{n+1}^{-1} g_{n}\right) g_{n}^{-1}
$$

and

$$
g_{n}=u^{\prime} g_{n+1}
$$

for $u^{\prime} \in U_{n-1}$ by item 4 . So

$$
g_{n}\left(g_{n+1}\right)^{-1}=u^{\prime} g_{n-1}\left(g_{n+1}^{-1} g_{n}\right)\left(g_{n-1}\right)^{-1}\left(u^{\prime}\right)^{-1}
$$

Then we know $g_{n+1}^{-1} g_{n} \in U_{n}$, and by item 6 we have $g_{n-1}\left(g_{n+1}^{-1} g_{n}\right)\left(g_{n-1}\right)^{-1} \in U_{n-1}$ and therefore $g_{n} g_{n+1}^{-1} \in U_{n-1}^{3}$. So finally

$$
d\left(g_{n}^{-1}, g_{n+1}^{-1}\right)=d\left(1, g_{n} g_{n+1}^{-1}\right)<2^{-n}
$$

The argument is similar for n odd, but we would use items 2 and 5 instead of items 3 and 6 .

It remains to construct the $g_{n} \mathrm{~s}$ and $U_{n} \mathrm{~s}$. Set $g_{0}=1$ and $U_{0}=G$. Note item 1 holds by assumption. Now assume we have $g_{2 n}$ and $U_{2 n}$. For any open V,

$$
y \in g_{2 n} \cdot \operatorname{int}\left(\overline{U_{2 n} x}\right) \cap \operatorname{int}(\overline{V y})
$$

so

$$
\operatorname{int}(\overline{V y}) \cap g_{2 n} \overline{U_{2 n} x} \neq \emptyset
$$

SO

$$
\operatorname{int}(\overline{V y}) \cap g_{2 n} U_{2 n} x \neq \emptyset
$$

Now take $U_{2 n+1}$ so that items 5,7 and 8 hold and pick $g_{2 n+1} \in g_{2 n} U_{2 n}$ such that $g_{2 n+1} x \in \operatorname{int}\left(\overline{U_{2 n+1} y}\right)$, i.e. items 2 and 3 hold. This can be done for any choice of $U_{2 n+1}$.

Now we take $U_{2 n+2}$ and $g_{2 n+2}$ similarly using the fact that x is G-big.

[^0]: ${ }^{1}$ By (1).

