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Recall we had all these lemmas last time. Now we have the following corollary:

Corollary 1. If G

�

X is topologically transitive, then the set of G-big elements
is either empty or is one orbit.

Proof. This follows almost immediately. We have seen that as long as the action
is topologically transitive (some dense orbit) then x being G-big implies G · x is
dense. Then this means any y which is G-big is in int

(
G · x

)
so is in G · x by the

lemma. �

Corollary 2. If G

�

X is topologically transitive and x ∈ X then TFAE:

(i) x is G-big,
(ii) G · x is comeager,

(iii) G · x is not meager.

Proof. (i) =⇒ (ii): This follows directly from previous results.
(ii) =⇒ (iii): This is clear.
(iii) =⇒ (i): This is just a calculation. Assume G · x is not meager and let

1 ∈ U ⊆ G. So now we want to show that U · x is somewhere dense. Write

G =
⋃
n<ω

gnU

so
G · x =

⋃
n<ω

gnU · x

but this means for some n gnU ·x is somewhere dense, and hence U ·x is somewhere
dense and we are done. �

Theorem 1. Let K be a Fräıssé class with limit M , G = Aut (M), n < ω. Then
TFAE:

(i) K (n) has EAP and JEP.
(ii) There is a generic tuple in Gn.

Proof. (i) =⇒ (ii): Assuming (i) the JEP implies that the action G

�

Gn by
conjugation is topologically transitive by a previous theorem. We need to show
that for all ε > 0 the union of all ε-small open sets is dense.

So let ε > 0, U ⊆ Gn open. We can assume U is of the form

U = Uf = {σ ∈ Gn |σi ⊇ fi} .

Let A0 ∈ K contain the domain and range of the fis so that
(
A0, f

)
∈ K (n). Now

increase A0 to M ⊇ A ⊇ A0 such that for all τ ∈ Stab (A) we have

dist (τ, 1) < ε .
1



2 LECTURE: PROFESSOR PIERRE SIMON NOTES: JACKSON VAN DYKE

Then we still have
(
A, f

)
∈ K (n).

Now by EAP there is (
A, f

)
⊆ (B, g)

definite on
(
A, f

)
. So Ug ⊆ Uf = U . Then the claim is the following:

Claim 1. Ug is ε-small.

But we have actually already shown this. We gave a characterization of what it
means to have this EAP property. For V1, V2 ⊆ Ug, by the previous lemma we have
that

Stab (A) · V1 ∩ V2 6= ∅ ,
and hence (V1)<ε ∩ V2 6= ∅ which is exactly what we want.

(ii) =⇒ (i): We have JEP since there is a dense orbit. We now show EAP.
Consider

(
A, f

)
. Then choose ε > 0 such that

Stab (A) ⊇ Bε (1) .

Let Ug ⊆ Uf be ε-small corresponding to some (B, g), A ⊆ B. This is definite on
A. �

It remains to prove/give a criterion for EAP.

Proposition 1. The class of graphs has EAP.

Proof. Let
(
A, f

)
∈ K (n). Take B an EPPA witness for A, and extend each fi to

gi ∈ Aut (B). Then (B, g) is definite over
(
A, f

)
. If(

C1, h1

)
(B, g)

(
C2, h2

)

let

D = C1 q C2

with no edges between C1 \B and C2 \B, ki = (h1)i ∪ (h2)i. Then(
C1, h1

)
(B, g)

(
D, k

)
(
C2, h2

)
.

�
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This argument shows ample generics, and therefore sip, for (almost) all classes
for which we have proved EPPA. It fails for, say, DLO. However, it is true that
DLO has sip, but by a completely different argument.

Remark 1. Sip is open for:

• random ordered graph,
• generic tournament (EPPA is not known)

Original proof of sip for S∞; Dixon, Neumann, Thomas (1985). Let G ≤ S∞ =
Sym Ω (where Ω is a countable set) of index < 2ℵ0 . We want to show there is
a finite A0 ⊆ Ω such that

G(A0) ≤ G ≤ G{A0} .

Lemma 1. Let Γ1,Γ2 ⊆ Ω be infinite such that Γ1 ∩ Γ2 is infinite and write

Sym (Γ1) = G(Ω\Γ1) .

Then
〈Sym (Γ1) ,Sym (Γ2)〉 = Sym (Γ1 ∪ Γ2)

Proof. Exercise. �

Claim 2. There is a moiety1 Σ ⊆ Ω such that Sym (Σ) ≤ G.

Proof. Let (Σi, i < ω) be disjoint moieties partitioning Ω. Let Si = Sym (Σi) ≤ S∞.
Let H ≤ G be

H = {g ∈ G | ∀i, gΣi = Σi} .
Then H ≤

∏
Si has index less than 2ℵ0 (since G has index less than this and

H = G ∩ (
∏
Si)). Then it follows that for some i, the image of the projection

H → Si is equal to Si.
Now consider K = G ∩ Sym Σi.

Claim 3. K / Sym (Σi).

Let σ ∈ K, τ ∈ Sym Σi. Then we want to show τστ−1 ∈ K. Now let h ∈ H
which projects to τ ∈ Si. Then

hσh−1 = τστ−1 ∈ K .

Fact 1. The normal subgroups of S∞ are 0, S∞, finitary permutations, and finitary
alternating permutations.

But there is only one group here with index less than 2ℵ0 is S∞, so K = S∞. �

Now note that there is an almost disjoint family of
(
Aj , j < 2ℵ0

)
of moieties of

Σi. Then for each j < 2ℵ0 , let gj ∈ S∞ be an involution which exchanges Aj and
Ω \ Σi, and fixes Ω \Aj . Now we can find j, k < 2ℵ0 such that

g−1
j gk ∈ G .

Now we have Aj and Aj which might have finite intersection. Then this group
element takes an element of Ak, throws is out to Ω \Σi, brings it back into Aj , and
throws it back out. Specifically, we claim that

g−1
j gk (Σi) ⊇ (Aj \Ak) ∪ gj (Aj \Ak) .

1This means Σ and Ω \ Σ are infinite.
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The first set is infinite, and the second is the complement minus finitely many
points. Now let B0 be finite such that

Ω \ Σi = gj (Aj \Ak) ∪B0 .

Now apply the lemma to Σi and g−1
i gk (Σi) to get

Stab (B0) ≤ G
and we are basically done. �

This is the proof that would be generalized to DLO, but the first lemma doesn’t
quite apply, so we would need to somehow leverage the product argument much
more.


