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1. Model theoretic properties of structures

Today we will mostly state things and not prove much, and then we will do the
NIP case in more detail.

1.1. Counting substructures. To motivate the introduction we start with the
combinatorial question from last time of counting the number of substructures.

Assume the language is relational. Let M be a ω-categorical and G = Aut (M).
Define fn (M) to be the number of substructures of M of size n up to isomorphism.
We could also define some other function (which we will not be using) that we just

mention. First Fn (M) is the number of n-types over ∅, and F̃n (M) is the number
of n-types of pairwise distinct elements. The difference between the two is somehow
that in f we somehow don’t have an ordering on the things we are counting so we
have

fn (M) ≤ F̃n (M) < Fn (M) .

If substructures are rigid (e.g. we have a linear order) then

fn (M) =
F̃n (M)

n!
.

The problem of F̃n (M) is that this thing somehow grows too quickly whereas fn
has a slower growth rate so it’s somehow more interesting to the combinatorialists.

Example 1. For DLO, fn (M) = 1.

Example 2. For M the random graph we roughly have that

fn (M) ≈ Fn (M) ≈ 2n
2

since this is somehow asking for graphs with n vertices.

Example 3. Let L = {≤} be a partial order then a tree is when this is actually a
linear order. Then fn (M) is the number of trees on n vertices, so it’s cn for some
constant c which is between 2 < c < 3. This is some kind of Catalan number. Note
that this is smaller than a factorial.

If we take two linear orders L = {≤1,≤2} then fn (M) = n!. This is why these
things are sometimes called permutation structures.

So we have seen constant growth rates, exponential, and factorial growth rates.
Now we have some basic facts.

Fact 1 (Cameron). (i) fn is non-decreasing.
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(ii) fn can grow as fact as one wants (with an infinite language).
(iii) If the language has max arity k and M is homogeneous in L then fn (M) =

O
(
en

k
)

.

Question 1. Understand structures with slow growth rate of fn (M).

Fact 2 (Cameron). If fn (M) = 1 for all n then M is one of the five reducts of
DLO, i.e. one of the following:

(i) (←): DLO
(ii) (↔): Betweenness relation B (x, y, z)

(iii) (

�

): Circular order C (x, y, z)
(iv) ( ⊕ ): Separation relation S (x, y, u, r)
(v) Pure equality

Remark 1. This class is a priori included in the reducts of DLO (since fn only
decreases when one takes reducts) so this fact was shown by showing the other
inclusion manually on each reduct.

Fact 3 (Macpherson). If M is primitive, either fn (M) = 1 for all n or

fn (M) ≥ cn

p (n)

for c = 21/5 ≈ 1.148 and p is some polynomial depending on M .

Conjecture 1. In fact, it is true with c = 2.

Example 4. Note that 2 is possible. Take a circular order and add a relation
where from every point we add an arrow to the other half of the circle. This should
be thought of as a topological 2-cover of the circle.

1.2. Model theoretical notions. There is a model theoretic property (NIP)
which is implied by a small growth rate of fn.

Definition 1. A formula ϕ (x, y) has IP (in M) if for all n < ω we can find tuples

(ai | i < n)
(
bj | j ∈ P (n)

)
in M such that

M |= ϕ
(
ai, bj

)
⇐⇒ i ∈ j .

Definition 2. We say M is NIP if no formula has IP.

So IP somehow gives us something complicated and it has NIP if this doesn’t
happen.

Example 5. The graph relation R (x, y) has IP in M the random graph.

Example 6. Higher order things like DLO and trees are NIP. NIP formulas are
closed under Boolean combinations.

Lemma 1 (Sauer-Shelah). If ϕ (x, y) is NIP then for finite A ⊆My there is some
k such that

|Sϕ (A)| = O
(
|A|k

)
where Sϕ (A) consists of the ϕ-types over A, i.e. the maximal consistent set of

formulas of the form ϕ
(
x, b
)

where b ∈ A.
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Note if ϕ has IP

|Sϕ (A)| = 2|A|

for some A of arbitrarily large size.
This has the following consequence. Assume M is homogeneous in a finite rela-

tional language and every relation in L is NIP (for every partition of the variables)
then

fn (M) = O
(
ecn lnn

)
for some c > 0 so its growth rate is at most factorial.

For simplicity assume we have 1-formula. Consider some n-elements a1, . . . , an.
We might as well count Fn (M) since the factorial won’t change whether or not we
satisfy this bound. Then the number of n-types over ∅ is at most

Sn (∅) ≤ S1 (∅) · S1 ({a0}) · S1 ({a0, a1}) · . . .
and by NIP this is a product which looks like:

Sn (∅) ≤ 1k · 2k · 3k · . . . · nk ≤ (n!)
c

for some c.

Fact 4 (Macpherson). If some ϕ (x, y) has IP then

fn (M) ≥ 2p(n)

for some polynomial p of degree at least 2.

For finitely homogeneous structures we get a gap that either

fn (M) = O
(
ecn lnn

)
where M is NIP, and

fn (M) ≥ ep(n)

(for deg p ≥ 2) in the IP case. So the picture is:

1 |gap| ecn︸︷︷︸
trees

. . . ecn lnn︸ ︷︷ ︸
2 lin ord︸ ︷︷ ︸

NIP

|gap| ecn
2

. . .

New goal: understand NIP for finite homogeneous (or ω-categorical) structures.

1.3. Stability.

Definition 3. ϕ (x, y) is unstable (in M) if for every n there are (ai | i < n)(
bj | j < n

)
such that

M |= ϕ
(
ai, bj

)
⇐⇒ i ≤ j .

Definition 4. M is stable if all formulas are stable.

Note that stable implies NIP.

Example 7. L = {E} where E is an equivalence relation then M is stable. DLO
is NIP but not stable.

Example 8. Fp vector spaces are stable ω-categorical but not finitely homogeneous.

(1) If M is finitely homogeneous and stable then it is ω-stable.
(2) ω-categorical and ω-stable structures are very understood. They are all

build out of (M,=), Fq vector spaces by families of covers. More precisely:
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Fact 5. • A primitive ω-categorical ω-stable is a Grassmannian over one of:
– (M,=)
– Affine or projective space over a finite field.

• A finite homogeneous stable primitive structure is interdefinable with un-
ordered k-tuples of distinct elements of (M,=).

Once we know that these are the primitive ones, one can just check what happens
with fn. For (M,=), fn = 1. The 2-Grassmannian of (M,=), then fn is roughly
the set of graphs with n edges. This is hard to compute, but certainly it grows
faster than cn but the actual asymptotic behavior is not known.

In the case of the Fp vector space fn looks like the following. This has at least
the number of partitions, so fn also grows faster than cn.

The conclusion is that if M is ω-stable, primitive, and fn = O (cn), then M ∼=
(M,=). So then the unstable case is left which we will deal with next time.

Stable not ω-stable things are not understood at all. Pseudo-planes can get some
lower bounds of fn by powers of

√
n but even powers of n hasn’t been done.
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