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1. FEW SUBSTRUCTURE

Definition 1. Let M be an w-categorical structure. We say it has few-substructures
if for no polynomial p (z) do we have

2n
p(n)

The theorem we will prove over the next two classes is the following.

fn (M) >

Theorem 1. If primitive M has few substructures, then either
(i) M is stable, not w-stable, or
(i) M is one of the 5 reducts of DLA.

Remark 1. In (i) we cannot hope for M to be finitely homogeneous. Conjecturally,
it never happens.

Lemma 1. If M has few substructures, then any expansion of M by adding finitely
many constants also has few substructures.

Exercise 1. Prove lemma 1.
We have seen the following.
Fact 1. If M has few substructure then it is NIP.
Fact 2. If M is primitive with few substructures, and w-stable, then M ~ (M, =).

Fact 3 (Shelah). If M is NIP unstable, then there is a formula ¢ (z,y) where
|z| = |y| = 1 which defines a partial order with infinite chains.

Fact 4. If M is w-categorical NIP, unstable, then there is a definable equivalence
relation E on M and a definable infinite linear order on M/E

Proof for few substructure case. The idea is to take this partial order and show that
if it isn’t close to linear then we have lots of substructures.

Let < be a definable (over some A) partial order on M. First we can assume
A =10. Let D C M be a transitive set (i.e. complete type over @) where < has
infinite chains. Now we have two cases.

Case 1: Any definable X C D with an finite chain has an infinite anti-chain.
Case 2: D has no infinite anti-chain.
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Case 1: Assume Cy C D is an infinite anti-chain and let ag € Xy. By transitivity
ag belongs to some infinite chain so

D() = {LE > agp, T € D}
has an infinite anti-chain, say X;. Now pick a; € C; and iterate. Let n < w, and
consider an ordered partition
n=mi+...+mg

with m; > 0. Now we will associate to this a structure of size n. Consider A C M
obtained by taking m; elements from C; (including a;) and nothing else. Then we
claim that if ™ # m’ then

Am 2 A .
The reason is as follows. We know Az has exactly mg minimal elements. Then re-
moving them we have exactly m; and so on. Now there are 2”1 ordered partitions,
hence
fn (M) > 271
Case 2: We will construct a linear order by induction on the size of a max
antichain. Assume D has no antichain of size n + 1. Now we again have two cases:

Case A: There is a € D such that the set V (a) of elements comparable to a is
infinite.
Case B: Otherwise.
Case A: We are done by induction as V (@) has no antichain of size n.
Case B: Say |V (a)| < k. Then we induct on k. For a,b € D define a — b if
b € V (a) is a maximal element of V' (a). Then define a < b if either ¢ < b or a — b.

Claim 1. If a < band b < ¢ then a < ec.

Assume not, i.e. a 4 ¢. Then either ¢ < a or ¢ € V (a) not maximal. Now we
again have cases.

Case a: ¢ < a.
Case B: ¢ € V (a) not maximal.

Case a: If a < b then ¢ < b which is a contradiction. If ¢ — b and b < ¢ then
since ¢ < a we have b < a so b — ¢ but now both a,c € V (b) which contradicts
maximality of c.

Case B: Let d >c€V(a). Ub<x, b<d,and b — ¢ then d &€ V (b) In either
case d € V (b). If d < b then ¢ < b. So b < d and a £ b which means a — b which
is a contradiction since d > b.

So < is a quasi-order. If a < b and b < a for a # b then it must be that a — b
and b — a so the equivalence classes of the quasi-order are finite in the quotient, <
induces an infinite order with |V (a)| < k — 1 for all a. d

2. INTERPRETABLE ORDERS IN M WITH FEW SUBSTRUCTURES
From now on assume M has few substructures.

Lemma 2. Let D C M and w : D — V an interpretable map with V' linearly
ordered. If V is infinite and transitive then 7 has finite fibers.

Proof. Take the partial order 7 (a) < 7w (b) on D. This is the same argument as
before. O
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Lemma 3. Let D C M and w : D — V an interpretable map with V' linearly
ordered. Then any parameter-defined subset of V' is a finite union of conver sets.

Proof. Let X be a definable set which is not a finite union of convex sets. For any
n < w and any o : n — 2 we can find
D, ={do,...,dn1} €D

with 7 (d;) < 7 (d;41) and 7 (d;) € X iff o (i) = 1. Then we get 2™ many. O

For V linearly ordered, let V denote the completion of V. A function f: X — V
(for X C M* definable) is definable if the set

{z,t) e X xV|t< f(z)} CX xV

is definable.

Lemma 4. Let X C M be deﬁn_able and transitive.Let D C M and 7: D —V as
above, V transitive. If f : X — V is definable then X = D and f = 7.

Proof. Assume D \ X is not empty. Then by transitivity of V' we have that 7 :
D\ X — V is onto. So now fix n < w. For ¢ € Fun (n,2) take
(a7 |i <n)
in M such that
ea e D\Xifo(i)=0andaf € X ifo (i) =1
e gi(af) < giy1(af,,) where go € {f,7}.
This gives 2™ substructures of size n. It follows that D C X and therefore X = D
by transitivity of X.
So now we have D = X and potentially two different maps to V' which we
want to show are the same. By transitivity f (a) > 7 (a). Now we construct 2"
substructures. Take any point ag then act f on it. This lands somewhere else,

and now when we choose our next point we can either choose it ahead of f (ag) or
behind it. Now just iterate it. O
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