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1. Few substructure

Definition 1. LetM be an ω-categorical structure. We say it has few-substructures
if for no polynomial p (x) do we have

fn (M) ≥ 2n

p (n)
.

The theorem we will prove over the next two classes is the following.

Theorem 1. If primitive M has few substructures, then either

(i) M is stable, not ω-stable, or
(ii) M is one of the 5 reducts of DLA.

Remark 1. In (i) we cannot hope forM to be finitely homogeneous. Conjecturally,
it never happens.

Lemma 1. IfM has few substructures, then any expansion ofM by adding finitely
many constants also has few substructures.

Exercise 1. Prove lemma 1.

We have seen the following.

Fact 1. If M has few substructure then it is NIP.

Fact 2. If M is primitive with few substructures, and ω-stable, then M' (M,=).

Fact 3 (Shelah). If M is NIP unstable, then there is a formula ϕ (x, y) where
|x| = |y| = 1 which defines a partial order with infinite chains.

Fact 4. If M is ω-categorical NIP, unstable, then there is a definable equivalence
relation E on M and a definable infinite linear order on M/E

Proof for few substructure case. The idea is to take this partial order and show that
if it isn’t close to linear then we have lots of substructures.

Let ≤ be a definable (over some A) partial order on M . First we can assume
A = ∅. Let D ⊆ M be a transitive set (i.e. complete type over ∅) where ≤ has
infinite chains. Now we have two cases.

Case 1: Any definable X ⊆ D with an finite chain has an infinite anti-chain.
Case 2: D has no infinite anti-chain.
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Case 1: Assume C0 ⊆ D is an infinite anti-chain and let a0 ∈ X0. By transitivity
a0 belongs to some infinite chain so

D0 = {x ≥ a0, x ∈ D}
has an infinite anti-chain, say X1. Now pick a1 ∈ C1 and iterate. Let n < ω, and
consider an ordered partition

n = m1 + . . .+mk

with mi > 0. Now we will associate to this a structure of size n. Consider Am ⊆M
obtained by taking mi elements from Ci (including ai) and nothing else. Then we
claim that if m 6= m′ then

Am 6∼= Am′ .

The reason is as follows. We know Am has exactly m0 minimal elements. Then re-
moving them we have exactly m1 and so on. Now there are 2n−1 ordered partitions,
hence

fn (M) ≥ 2n−1 .

Case 2: We will construct a linear order by induction on the size of a max
antichain. Assume D has no antichain of size n+ 1. Now we again have two cases:

Case A: There is a ∈ D such that the set V (a) of elements comparable to a is
infinite.

Case B: Otherwise.

Case A: We are done by induction as V (a) has no antichain of size n.
Case B: Say |V (a)| ≤ k. Then we induct on k. For a, b ∈ D define a → b if

b ∈ V (a) is a maximal element of V (a). Then define a E b if either a ≤ b or a→ b.

Claim 1. If a E b and b E c then a E c.

Assume not, i.e. a 6E c. Then either c < a or c ∈ V (a) not maximal. Now we
again have cases.

Case α: c < a.
Case β: c ∈ V (a) not maximal.

Case α: If a ≤ b then c < b which is a contradiction. If a → b and b < c then
since c < a we have b < a so b → c but now both a, c ∈ V (b) which contradicts
maximality of c.

Case β: Let d > c ∈ V (a). If b ≤ x, b ≤ d, and b → c then d 6∈ V (b) In either
case d 6∈ V (b). If d ≤ b then c < b. So b < d and a 6≤ b which means a → b which
is a contradiction since d > b.

So E is a quasi-order. If a E b and b E a for a 6= b then it must be that a → b
and b→ a so the equivalence classes of the quasi-order are finite in the quotient, E
induces an infinite order with |V (a)| ≤ k − 1 for all a. �

2. Interpretable orders in M with few substructures

From now on assume M has few substructures.

Lemma 2. Let D ⊆ M and π : D → V an interpretable map with V linearly
ordered. If V is infinite and transitive then π has finite fibers.

Proof. Take the partial order π (a) ≤ π (b) on D. This is the same argument as
before. �
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Lemma 3. Let D ⊆ M and π : D → V an interpretable map with V linearly
ordered. Then any parameter-defined subset of V is a finite union of convex sets.

Proof. Let X be a definable set which is not a finite union of convex sets. For any
n < ω and any σ : n→ 2 we can find

Dσ = {d0, . . . , dn−1} ⊆ D
with π (di) < π (di+1) and π (di) ∈ X iff σ (i) = 1. Then we get 2n many. �

For V linearly ordered, let V̄ denote the completion of V . A function f : X → V̄
(for X ⊆Mk definable) is definable if the set

{(x, t) ∈ X × V | t < f (x)} ⊆ X × V
is definable.

Lemma 4. Let X ⊆ M be definable and transitive.Let D ⊆ M and π : D → V as
above, V transitive. If f : X → V̄ is definable then X = D and f = π.

Proof. Assume D \ X is not empty. Then by transitivity of V we have that π :
D \X → V is onto. So now fix n < ω. For σ ∈ Fun (n, 2) take

(aσi | i < n)

in M such that

• aσi ∈ D \X if σ (i) = 0 and aσi ∈ X if σ (i) = 1
• gi (aσi ) < gi+1

(
aσi+1

)
where g0 ∈ {f, π}.

This gives 2n substructures of size n. It follows that D ⊆ X and therefore X = D
by transitivity of X.

So now we have D = X and potentially two different maps to V which we
want to show are the same. By transitivity f (a) > π (a). Now we construct 2n

substructures. Take any point a0 then act f on it. This lands somewhere else,
and now when we choose our next point we can either choose it ahead of f (a0) or
behind it. Now just iterate it. �
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