LECTURE 23 MATH 229

LECTURE: PROFESSOR PIERRE SIMON NOTES: JACKSON VAN DYKE

1. Few substructure

Definition 1. Let \mathcal{M} be an ω -categorical structure. We say it has *few-substructures* if for no polynomial p(x) do we have

$$f_n\left(\mathcal{M}\right) \ge \frac{2^n}{p\left(n\right)}$$

The theorem we will prove over the next two classes is the following.

Theorem 1. If primitive \mathcal{M} has few substructures, then either

(i) \mathcal{M} is stable, not ω -stable, or

(ii) \mathcal{M} is one of the 5 reducts of DLA.

Remark 1. In (i) we cannot hope for \mathcal{M} to be finitely homogeneous. Conjecturally, it never happens.

Lemma 1. If \mathcal{M} has few substructures, then any expansion of \mathcal{M} by adding finitely many constants also has few substructures.

Exercise 1. Prove lemma 1.

We have seen the following.

Fact 1. If \mathcal{M} has few substructure then it is NIP.

Fact 2. If \mathcal{M} is primitive with few substructures, and ω -stable, then $\mathcal{M} \simeq (M, =)$.

Fact 3 (Shelah). If \mathcal{M} is NIP unstable, then there is a formula $\varphi(x, y)$ where |x| = |y| = 1 which defines a partial order with infinite chains.

Fact 4. If \mathcal{M} is ω -categorical NIP, unstable, then there is a definable equivalence relation E on \mathcal{M} and a definable infinite linear order on \mathcal{M}/E

Proof for few substructure case. The idea is to take this partial order and show that if it isn't close to linear then we have lots of substructures.

Let \leq be a definable (over some A) partial order on M. First we can assume $A = \emptyset$. Let $D \subseteq M$ be a transitive set (i.e. complete type over \emptyset) where \leq has infinite chains. Now we have two cases.

Case 1: Any definable $X \subseteq D$ with an finite chain has an infinite anti-chain. Case 2: D has no infinite anti-chain.

Date: April 18, 2019.

Case 1: Assume $C_0 \subseteq D$ is an infinite anti-chain and let $a_0 \in X_0$. By transitivity a_0 belongs to some infinite chain so

$$D_0 = \{x \ge a_0, x \in D\}$$

has an infinite anti-chain, say X_1 . Now pick $a_1 \in C_1$ and iterate. Let $n < \omega$, and consider an ordered partition

$$n = m_1 + \ldots + m_k$$

with $m_i > 0$. Now we will associate to this a structure of size n. Consider $A_{\overline{m}} \subseteq M$ obtained by taking m_i elements from C_i (including a_i) and nothing else. Then we claim that if $\overline{m} \neq \overline{m'}$ then

$$A_{\overline{m}} \not\cong A_{\overline{m'}}$$
.

The reason is as follows. We know $A_{\overline{m}}$ has exactly m_0 minimal elements. Then removing them we have exactly m_1 and so on. Now there are 2^{n-1} ordered partitions, hence

$$f_n(M) \ge 2^{n-1}$$

Case 2: We will construct a linear order by induction on the size of a max antichain. Assume D has no antichain of size n + 1. Now we again have two cases: Case A: There is $a \in D$ such that the set V(a) of elements comparable to a is infinite.

Case B: Otherwise.

Case A: We are done by induction as V(a) has no antichain of size n.

Case B: Say $|V(a)| \leq k$. Then we induct on k. For $a, b \in D$ define $a \to b$ if $b \in V(a)$ is a maximal element of V(a). Then define $a \leq b$ if either $a \leq b$ or $a \to b$.

Claim 1. If $a \leq b$ and $b \leq c$ then $a \leq c$.

Assume not, i.e. $a \not\leq c$. Then either c < a or $c \in V(a)$ not maximal. Now we again have cases.

Case α : c < a.

Case β : $c \in V(a)$ not maximal.

Case α : If $a \leq b$ then c < b which is a contradiction. If $a \to b$ and b < c then since c < a we have b < a so $b \to c$ but now both $a, c \in V(b)$ which contradicts maximality of c.

Case β : Let $d > c \in V(a)$. If $b \leq x, b \leq d$, and $b \to c$ then $d \notin V(b)$ In either case $d \notin V(b)$. If $d \leq b$ then c < b. So b < d and $a \not\leq b$ which means $a \to b$ which is a contradiction since d > b.

So \leq is a quasi-order. If $a \leq b$ and $b \leq a$ for $a \neq b$ then it must be that $a \rightarrow b$ and $b \rightarrow a$ so the equivalence classes of the quasi-order are finite in the quotient, \leq induces an infinite order with $|V(a)| \leq k-1$ for all a.

2. Interpretable orders in \mathcal{M} with few substructures

From now on assume \mathcal{M} has few substructures.

Lemma 2. Let $D \subseteq M$ and $\pi : D \to V$ an interpretable map with V linearly ordered. If V is infinite and transitive then π has finite fibers.

Proof. Take the partial order $\pi(a) \leq \pi(b)$ on D. This is the same argument as before.

Lemma 3. Let $D \subseteq M$ and $\pi : D \to V$ an interpretable map with V linearly ordered. Then any parameter-defined subset of V is a finite union of convex sets.

Proof. Let X be a definable set which is not a finite union of convex sets. For any $n < \omega$ and any $\sigma : n \to 2$ we can find

$$D_{\sigma} = \{d_0, \dots, d_{n-1}\} \subseteq D$$

with $\pi(d_i) < \pi(d_{i+1})$ and $\pi(d_i) \in X$ iff $\sigma(i) = 1$. Then we get 2^n many. \Box

For V linearly ordered, let \overline{V} denote the completion of V. A function $f: X \to \overline{V}$ (for $X \subseteq M^k$ definable) is definable if the set

$$\{(x,t) \in X \times V \,|\, t < f(x)\} \subseteq X \times V$$

is definable.

Lemma 4. Let $X \subseteq M$ be definable and transitive.Let $D \subseteq M$ and $\pi : D \to V$ as above, V transitive. If $f : X \to \overline{V}$ is definable then X = D and $f = \pi$.

Proof. Assume $D \setminus X$ is not empty. Then by transitivity of V we have that π : $D \setminus X \to V$ is onto. So now fix $n < \omega$. For $\sigma \in Fun(n, 2)$ take

$$(a_i^{\sigma} \mid i < n)$$

in M such that

• $a_i^{\sigma} \in D \setminus X$ if $\sigma(i) = 0$ and $a_i^{\sigma} \in X$ if $\sigma(i) = 1$

• $g_i(a_i^{\sigma}) < g_{i+1}(a_{i+1}^{\sigma})$ where $g_0 \in \{f, \pi\}$.

This gives 2^n substructures of size n. It follows that $D \subseteq X$ and therefore X = D by transitivity of X.

So now we have D = X and potentially two different maps to V which we want to show are the same. By transitivity $f(a) > \pi(a)$. Now we construct 2^n substructures. Take any point a_0 then act f on it. This lands somewhere else, and now when we choose our next point we can either choose it ahead of $f(a_0)$ or behind it. Now just iterate it.