LECTURE 24
 MATH 229

LECTURE: PROFESSOR PIERRE SIMON
 NOTES: JACKSON VAN DYKE

Recall we're still in this situation where M has few substructures. Then we're studying tameness of definable linear orders. The last lemma we had was:
Lemma 1. Let \bar{V} be transitive and linearly ordered. Then for $f: X \rightarrow \bar{V}, \pi: D \rightarrow$ \bar{V} we have $X=D$ and $f=\pi$.

It follows that the induced structure on B is o-minimal. ${ }^{1}$ We now have a stronger statement which will effectively tell us that V has no structure.
Proposition 1. Let $\pi: D \rightarrow V$ be as above. In particular V is transitive and linear ordered. Then π has finite fibers and any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ (defining a subset of D^{n}) definable over some \bar{b} is equivalent to a Boolean combination of formulas of the form
(a) $\pi\left(x_{i}\right) \square \pi\left(x_{j}\right)$, where $\square \in\{=, \leq\}$,
(b) $\pi\left(x_{i}\right)<\pi(a)$, where $a \in \bar{b} \cap D$, and
(c) $x_{i}=a$ for some $a \in \pi^{-1}(\pi(\bar{b} \cap D))$.

Proof. Let $\bar{c}=\left(c_{0}, \ldots, c_{l-1}\right) \in M^{l}$, and let $v \in V$ be definable over \bar{c}. Then there is some index $i<l$ such that $v=\pi\left(c_{i}\right)$. Take l minimal such that this is false. Then let $\overline{c_{*}}=\left(c_{0}, \ldots, c_{l-2}\right), \overline{c c_{*}} \wedge c_{l-1}$. First notice c_{l-1} is not algebraic over $\overline{c_{*}}$ because otherwise v would be algebraic over $\overline{c_{*}}$, and

$$
v \in \operatorname{acl}\left(\overline{c_{*}}\right)=\operatorname{dcl}\left(\overline{c_{*}}\right) \cap V
$$

So over $\overline{c_{*}}$ we have a definable function $f_{\overline{c_{*}}}$ such that

$$
f_{\overline{c_{*}}}\left(c_{l-1}\right)=v
$$

Let

$$
W=\left\{w \in V \mid \operatorname{tp}\left(w / \overline{c_{*}}\right)=\operatorname{tp}\left(v / \overline{c_{*}}\right)\right\}
$$

and apply the previous lemma to this (replacing D with $\pi^{-1}(W)$). So $f_{\overline{\bar{c}_{*}}}=\pi$ and thus $v=\pi\left(c_{l-1}\right)$. We also have that $\operatorname{acl}(\bar{c}) \cap D=\pi^{-1}(\pi(\bar{c} \cap D))$.

We prove the proposition by induction on n. For $n=1 \varphi\left(x_{1}\right)$ is a Boolean combination of convex subsets of V. The end cuts of those convex sets are in

$$
\operatorname{dcl}(\bar{b}) \cap \bar{V}=\pi(\bar{v} \cap D)
$$

so $\varphi\left(x_{1}\right)$ is as desired.
Now we complete the inductive step. Fix values for x_{1}, \ldots, x_{n-1} then apply the case $n=1$. There are finitely many possibilities for the set $\varphi\left(c_{1}, \ldots, x_{n-1}, x_{n}\right)$. Now for each of these possibilities we can define the set of c_{1}, \ldots, c_{n-1} for which each possibility is realized. Hence by induction the formula has the desired form.

[^0]As a consequence of this, the induced structure on V is just DLO.
Proposition 2. A similar statement holds for circular orders, i.e. $\pi: D \rightarrow V, V$ transitive, has a definable circular order.

The point is that instead of inequalities we have things like $C\left(\pi\left(x_{i}\right), \pi\left(x_{j}\right), \pi(c)\right)$ for $c \in \pi(D \cap \bar{b})$.

Proof. Take $\varphi\left(x_{1}, \ldots, x_{n}\right)$ over \bar{b} as in the previous proposition. If $D \cap \bar{b} \neq \emptyset$, then over \bar{b}, V splits into linear orders and we can apply proposition 1.

In general, pick any $a \in D$, then working over a we can apply proposition 1 . Since we can change a, a cannot appear in the decomposition of φ.

The conclusion is the following.
Corollary 1. Let D be definable, $\pi: D \rightarrow V$ an interpretable map, where V is transitive, infinite, and has a definable separation relation. Take $\bar{b} \in M \backslash D$. Then V is transitive over \bar{b} and its structure over \bar{b} is precisely one of the four unstable reducts of DLO.

1. Gluing orders

Say that a definable set $D_{\bar{a}} \subseteq M$ (over \bar{a}) is almost linear (over \bar{a}) if there is $\pi: D_{\bar{a}} \rightarrow V_{\bar{a}}$ interpretable over \bar{a} and $V_{\bar{a}}$ has an \bar{a}-definable linear order. The point is that π might have finite fibers so it might not actually be linear. We can see $\leq_{\bar{a}}$ as a quasi-order over $D_{\bar{a}}$.

Now we want to see what happens when we vary \bar{a}.
Lemma 2. Let $D_{\bar{a}}$ be almost linear, transitive over $\bar{a}, \pi: D_{\bar{a}} \rightarrow V_{\bar{a}}$. Define the equivalence relation $E_{\bar{a}}$ as:

$$
x E_{\bar{a} y} \quad \Longleftrightarrow \quad \pi(x)=\pi(y)
$$

Let $c \in D_{\bar{a}}$. Then for $c^{\prime} \in M$ the following are equivalent:
(1) $c^{\prime} \in D_{\bar{a}}, E_{\bar{a}}$-equivalent to c
(2) $c \in \operatorname{acl}\left(c^{\prime}\right)$.

Proof. (2) $\Longrightarrow(1)$: This follows from proposition 1. The point is that if c is algebraic over c^{\prime} so is its projection, but the only way a point in M can know a point in V is if it lies above it.
$(1) \Longrightarrow(2)$: Enumerate the $E_{\bar{a}}$ class of c as $\bar{c}_{0} \wedge \overline{c_{1}}$ where $\overline{c_{0}} \in \operatorname{acl}(c), \overline{c_{1}} \notin \operatorname{acl}(c)$. There is $\sigma \in \operatorname{Aut}(M)$ fixing c and such that

$$
\sigma\left(\overline{c_{1}}\right) \cap \operatorname{acl}(\bar{a} \wedge c)=\emptyset .
$$

Let $\overline{a^{\prime}}=\sigma(\bar{a})$. Then we claim that $c \in \operatorname{acl}\left(\bar{a} \wedge \overline{a^{\prime}}\right)$, as the set of $E_{\bar{a} \text {-classes which }}$ $D_{\bar{a}^{\prime}}$ intersects non-trivially is finite. Now \bar{a} must contain a point in the $E_{\bar{a}^{\prime}}$-class of c. Now this point is algebraic over $\bar{a} \wedge c$ since it is in \bar{a}. But this means it is in $\overline{c_{0}}$. But this is not possible since $D_{\bar{a}}$ is transitive. So we are done.

Note that $E_{\bar{a}}$ is just the relation of inter-algebraicity over \emptyset.
Lemma 3. Let $D_{\bar{a}}$ and $D_{\bar{b}}^{\prime}$ be transitive and almost-linear over \bar{a} and \bar{b} respectively. Assume there is $c \in D_{\bar{a}} \cap D_{\bar{b}}^{\prime}$. Then $D_{\bar{a}}$ and $D_{\bar{b}}^{\prime}$ agree up to reversal on an open neighborhood of c.

Proof. First we know that the $E_{\bar{a}}$-class of c and the $E_{\bar{b}}^{\prime}$-class of c coincide. We claim that $c \notin \operatorname{acl}(\bar{a} \wedge \bar{b})$. Working over \bar{a}, if $c \in \operatorname{acl}(\bar{a} \wedge \bar{b})$, then \bar{b} has a point in the $E_{\bar{a}}$-class of c. This is the $E_{\bar{b}}$-class of c, so this would contradict transitivity of $D_{\bar{b}}^{\prime}$.

It follows that c is not an endpoint of the intersection (in $D_{\bar{a}}$). Therefore there is an open neighborhood of c in $D_{\bar{a}}$ inside the intersection. Then the order induced on this intersection by $D_{\bar{b}}^{\prime}$ must either be the original order, or the reversed order. More specifically we can work in a small neighborhood of c which doesn't intersect $\operatorname{acl}(\bar{a} \wedge \bar{b})$ so \bar{b} cannot do anything besides reverse the order in this neighborhood.

Now repeat the same argument for \bar{b} and it is easy to see we are done.

[^0]: Date: April 23, 2019.
 ${ }^{1}$ This means a definable set is a finite union of intervals.

