LECTURE 24 MATH 229

LECTURE: PROFESSOR PIERRE SIMON NOTES: JACKSON VAN DYKE

Recall we're still in this situation where M has few substructures. Then we're studying tameness of definable linear orders. The last lemma we had was:

Lemma 1. Let \overline{V} be transitive and linearly ordered. Then for $f: X \to \overline{V}, \pi: D \to \overline{V}$ we have X = D and $f = \pi$.

It follows that the induced structure on B is *o*-minimal.¹ We now have a stronger statement which will effectively tell us that V has no structure.

Proposition 1. Let $\pi : D \to V$ be as above. In particular V is transitive and linear ordered. Then π has finite fibers and any formula $\varphi(x_1, \ldots, x_n)$ (defining a subset of D^n) definable over some \overline{b} is equivalent to a Boolean combination of formulas of the form

- (a) $\pi(x_i) \Box \pi(x_j)$, where $\Box \in \{=, \leq\}$,
- (b) $\pi(x_i) < \pi(a)$, where $a \in \overline{b} \cap D$, and
- (c) $x_i = a$ for some $a \in \pi^{-1} \left(\pi \left(\overline{b} \cap D \right) \right)$.

Proof. Let $\overline{c} = (c_0, \ldots, c_{l-1}) \in M^l$, and let $v \in V$ be definable over \overline{c} . Then there is some index i < l such that $v = \pi(c_i)$. Take l minimal such that this is false. Then let $\overline{c_*} = (c_0, \ldots, c_{l-2}), \overline{cc_*} \wedge c_{l-1}$. First notice c_{l-1} is not algebraic over $\overline{c_*}$ because otherwise v would be algebraic over $\overline{c_*}$, and

$$v \in \operatorname{acl}\left(\overline{c_*}\right) = \operatorname{dcl}\left(\overline{c_*}\right) \cap V$$
.

So over $\overline{c_*}$ we have a definable function $f_{\overline{c_*}}$ such that

$$f_{\overline{c_*}}(c_{l-1}) = v \; .$$

Let

$$W = \{ w \in V \mid \operatorname{tp}(w/\overline{c_*}) = \operatorname{tp}(v/\overline{c_*}) \}$$

and apply the previous lemma to this (replacing D with $\pi^{-1}(W)$). So $f_{\overline{c_*}} = \pi$ and thus $v = \pi(c_{l-1})$. We also have that $\operatorname{acl}(\overline{c}) \cap D = \pi^{-1}(\pi(\overline{c} \cap D))$.

We prove the proposition by induction on n. For $n = 1 \varphi(x_1)$ is a Boolean combination of convex subsets of V. The end cuts of those convex sets are in

$$\operatorname{dcl}\left(\overline{b}\right) \cap \overline{V} = \pi\left(\overline{v} \cap D\right)$$

so $\varphi(x_1)$ is as desired.

Now we complete the inductive step. Fix values for x_1, \ldots, x_{n-1} then apply the case n = 1. There are finitely many possibilities for the set $\varphi(c_1, \ldots, x_{n-1}, x_n)$. Now for each of these possibilities we can define the set of c_1, \ldots, c_{n-1} for which each possibility is realized. Hence by induction the formula has the desired form. \Box

Date: April 23, 2019.

¹This means a definable set is a finite union of intervals.

As a consequence of this, the induced structure on V is just DLO.

Proposition 2. A similar statement holds for circular orders, i.e. $\pi : D \to V, V$ transitive, has a definable circular order.

The point is that instead of inequalities we have things like $C(\pi(x_i), \pi(x_j), \pi(c))$ for $c \in \pi(D \cap \overline{b})$.

Proof. Take $\varphi(x_1, \ldots, x_n)$ over \overline{b} as in the previous proposition. If $D \cap \overline{b} \neq \emptyset$, then over \overline{b} , V splits into linear orders and we can apply proposition 1.

In general, pick any $a \in D$, then working over a we can apply proposition 1. Since we can change a, a cannot appear in the decomposition of φ .

The conclusion is the following.

Corollary 1. Let D be definable, $\pi : D \to V$ an interpretable map, where V is transitive, infinite, and has a definable separation relation. Take $\overline{b} \in M \setminus D$. Then V is transitive over \overline{b} and its structure over \overline{b} is precisely one of the four unstable reducts of DLO.

1. Gluing orders

Say that a definable set $D_{\overline{a}} \subseteq M$ (over \overline{a}) is almost linear (over \overline{a}) if there is $\pi : D_{\overline{a}} \to V_{\overline{a}}$ interpretable over \overline{a} and $V_{\overline{a}}$ has an \overline{a} -definable linear order. The point is that π might have finite fibers so it might not actually be linear. We can see $\leq_{\overline{a}}$ as a quasi-order over $D_{\overline{a}}$.

Now we want to see what happens when we vary \overline{a} .

Lemma 2. Let $D_{\overline{a}}$ be almost linear, transitive over \overline{a} , $\pi : D_{\overline{a}} \to V_{\overline{a}}$. Define the equivalence relation $E_{\overline{a}}$ as:

$$xE_{\overline{a}}y \qquad \iff \qquad \pi(x) = \pi(y)$$

Let $c \in D_{\overline{a}}$. Then for $c' \in M$ the following are equivalent:

(1) $c' \in D_{\overline{a}}, E_{\overline{a}}$ -equivalent to c

(2) $c \in \operatorname{acl}(c')$.

Proof. (2) \implies (1): This follows from proposition 1. The point is that if c is algebraic over c' so is its projection, but the only way a point in M can know a point in V is if it lies above it.

(1) \implies (2): Enumerate the $E_{\overline{a}}$ class of c as $\overline{c}_0 \wedge \overline{c_1}$ where $\overline{c_0} \in \operatorname{acl}(c), \overline{c_1} \notin \operatorname{acl}(c)$. There is $\sigma \in \operatorname{Aut}(M)$ fixing c and such that

$$\sigma\left(\overline{c_1}\right) \cap \operatorname{acl}\left(\overline{a} \wedge c\right) = \emptyset \ .$$

Let $\overline{a'} = \sigma(\overline{a})$. Then we claim that $c \in \operatorname{acl}(\overline{a} \wedge \overline{a'})$, as the set of $E_{\overline{a}}$ -classes which $D_{\overline{a'}}$ intersects non-trivially is finite. Now \overline{a} must contain a point in the $E_{\overline{a'}}$ -class of c. Now this point is algebraic over $\overline{a} \wedge c$ since it is in \overline{a} . But this means it is in $\overline{c_0}$. But this is not possible since $D_{\overline{a}}$ is transitive. So we are done.

Note that $E_{\overline{a}}$ is just the relation of inter-algebraicity over \emptyset .

Lemma 3. Let $D_{\overline{a}}$ and $D'_{\overline{b}}$ be transitive and almost-linear over \overline{a} and \overline{b} respectively. Assume there is $c \in D_{\overline{a}} \cap D'_{\overline{b}}$. Then $D_{\overline{a}}$ and $D'_{\overline{b}}$ agree up to reversal on an open neighborhood of c. *Proof.* First we know that the $E_{\overline{a}}$ -class of c and the $E'_{\overline{b}}$ -class of c coincide. We claim that $c \notin \operatorname{acl}(\overline{a} \wedge \overline{b})$. Working over \overline{a} , if $c \in \operatorname{acl}(\overline{a} \wedge \overline{b})$, then \overline{b} has a point in the $E_{\overline{a}}$ -class of c. This is the $E_{\overline{b}}$ -class of c, so this would contradict transitivity of $D'_{\overline{b}}$.

 $D'_{\overline{b}}$. It follows that c is not an endpoint of the intersection (in $D_{\overline{a}}$). Therefore there is an open neighborhood of c in $D_{\overline{a}}$ inside the intersection. Then the order induced on this intersection by $D'_{\overline{b}}$ must either be the original order, or the reversed order. More specifically we can work in a small neighborhood of c which doesn't intersect act $(\overline{a} \wedge \overline{b})$ so \overline{b} cannot do anything besides reverse the order in this neighborhood.

Now repeat the same argument for \overline{b} and it is easy to see we are done.