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1. More lemmas

Today we will finish the proof we have been doing. The last thing we proved
was that if we have an intersection of Da and Da′ then there is a neighborhood of
the point in common such that the orders are either the same or opposite. Now we
have the following.

Lemma 1. Let D1, D2 be almost linear, transitive (and definable over some pa-
rameters a and b respectively). Assume they have an interval I in common. Take
the maximal such I. Then I is cofinal either in D1 or D2.

Proof. Assume I is not cofinal in either. Let c ∈ D1 be the sup of I in D1, and
d ∈ D2 be the sup of I in D2. Then c ∈ dcl

(
a ∧ b

)
. Therefore c is interalgebraic

with some element of b. Let d = d0 > d1 > d2 > . . . be a sequence of elements of
D2. By transitivity, for each i there is σi ∈ Aut

(
M/b

)
such that σi (d) = di. Set

D1,i = σi (D1), and ci = σi (c).

Claim 1. The elements ci are pairwise distinct.

This must be the case because otherwise D1,i and D1,j would have a neighbor-
hood of ci = cj in common, but this is impossible by construction.

Since each ci is n acl
(
b
)
, this is a contradiction. �

Corollary 1. Let D0, D1 be as above and I = D0 ∩D1. Then we have one of the
following:

(a) I = ∅,
(b) I is an initial segment of Di and a final segment of Dj and the two orders

disagree,
(c) I is an initial segment of Di and a final segment of Dj and the two orders

agree, and
(d) I = I1 ∪ I2 where each of I1 and I2 are as in (b), or
(e) I = I1 ∪ I2 where each of I1 and I2 are as in (c).

Let L be the set of definable subsets of M which are almost linear and transitive
over some a. If D0, D1 ∈ L, write D0 E D1 if D0 ∩D1 is as in case (b) or (d).

Say that c ∈M is of order type if there is D ∈ L such that c ∈ D. Let Ω be the
set of c ∈ M of order type. Define an equivalence relation E on Ω by cEd if there
are D0 E D1 E . . . E Dk with c ∈ D0 and d ∈ Dk (or d ∈ D0 and c ∈ Dk).
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On each E-equivalence class we have a definable separation relation S (a, b, c, d)
defined as follows. Every path as above from a to b contains either c or d. Note
that D is really on the quotient of the class by a finite equivalence relation.1

2. The main theorem

Theorem 1. Assume that M has few substructures. Then there is a ∅-definable
equivalence relation F with finite classes and a ∅-definable equivalence relation E
on the quotient M0 = M/F such that the following is true. Let N := M0/E, and
M∗ denote the reduct of M0 to pullbacks of definable subsets of N . Then M∗ is
stable, and

fn (M∗) = fn (M0)

for all n.

Proof. F is interalgebraicity for points of order type and equality elsewhere. Then
for M0 = M/F , fn (M0) ≤ fn (M), so M0 also has few substructures.

Let E be the equivalence relation E on M0 defined above (extended by = on
points which are not of order type). Let N = M0/E.

Claim 2. N is stable.

Otherwise, as N is NIP, there would be a definable map f : N → V (V lin-
early ordered) which would lift to an almost linear subset of M0 contradicting the
definition of E.

Define M∗ as in the statement. Then M∗ is stable. It just remains to see that
fn (M∗) = fn (M0). I.e. a finite substructure A ⊆ M∗ has a unique expansion (up
to isomorphism) to a substructure of M0.

Proceed by induction on |A|. Write

A = A0 qA1 q · · · qAk

where A0 consists of the points not of order type, and the remaining Ai consist
of points of order type grouped by E-equivalence classes. We expand A to an
M0 substructure one Ai at a time. At stage i the E-class of Ai has a structure
over A0 . . . Ai−1 which is isomorphic to one of the four unstable reducts of DLO.
Therefore there is a unique embedding of Ai into M0 up to isomorphisms over the
previous A<i. �

Theorem 2. Assume M has few substructures and is primitive. Then M is either
stable or M is one of the four unstable reducts of DLO.

In fact we recover the classification of the unstable reducts of DLO.

Proof. As M is primitive F is equality, and E is either equality or empty and this
gives us the two cases. �

Corollary 2. Assume that for no polynomial p we have

fn (M) ≥ Φn

p (n)

for Φ ≈ 1.618 is the golden ratio. Then M has a stable reduct M∗ such that
fn (M) = fn (M∗).

1This is just interalgebraicity as we saw.
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Proof. We only need to show that F is equality. If it wasn’t, then we get at least Fn

substructures, where Fn is the nth Fibonacci number, and we know Fn ∼ Φn/
√

5.
Note that this is optimal because if we do take a trivial 2-cover of DLO, then

fn (M) = Fn. For any stable reduct M∗, fn (M∗) ≤ n/2. �

3. The stable case

We will now deal with the stable case and then consider more general NIP. What
remains:

• Understand the stable case:
– ω stable: well understood,
– strictly stable: not well understood at all.

• generalize to fn (M) ∼ cn or even fn (M) ∼ e2n logn.

Question 1. Are there uncountable many M such that fn (M) ∼ ecn logn?

The idea to approach this is the following. Reduce to finite homogeneous case
and induct on the (pseudo-)arity.

Definition 1. The pseudo-arity of M is the minimal arity of a finitely homogeneous
structure N in which M can be interpreted.

Example 1. The arity of the circular order is 3, however the pseudo-arity is 2.

Note that a structure of arity 2 cannot interpret a random 3-hypergraph. Sim-
ilarly a structure of arity 2 cannot interpret a tree (T,≤) with > 1 branch above
every node.

There is another parameter called the “dimension” which is the number of inde-
pendent linear orders.

Example 2. The dimension of DLO is 1, and DLO2 has dimension 1. We also
want something with two independent linear orders to have dim (M,≤1,≤1) = 2.

The point is that somehow arity 2 is well understood, and as arity increases
thins get more complicated. Trees are dimension 1 and arity 3 which is the first
case which is somehow not well understood.
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