LECTURE 25

 MATH 229
LECTURE: PROFESSOR PIERRE SIMON

NOTES: JACKSON VAN DYKE

1. More lemmas

Today we will finish the proof we have been doing. The last thing we proved was that if we have an intersection of D_{a} and $D_{a^{\prime}}$ then there is a neighborhood of the point in common such that the orders are either the same or opposite. Now we have the following.

Lemma 1. Let D_{1}, D_{2} be almost linear, transitive (and definable over some parameters \bar{a} and \bar{b} respectively). Assume they have an interval I in common. Take the maximal such I. Then I is cofinal either in D_{1} or D_{2}.

Proof. Assume I is not cofinal in either. Let $c \in D_{1}$ be the \sup of I in D_{1}, and $d \in D_{2}$ be the sup of I in D_{2}. Then $c \in \operatorname{dcl}(\bar{a} \wedge \bar{b})$. Therefore c is interalgebraic with some element of \bar{b}. Let $d=d_{0}>d_{1}>d_{2}>\ldots$ be a sequence of elements of D_{2}. By transitivity, for each i there is $\sigma_{i} \in \operatorname{Aut}(M / \bar{b})$ such that $\sigma_{i}(d)=d_{i}$. Set $D_{1, i}=\sigma_{i}\left(D_{1}\right)$, and $c_{i}=\sigma_{i}(c)$.

Claim 1. The elements c_{i} are pairwise distinct.
This must be the case because otherwise $D_{1, i}$ and $D_{1, j}$ would have a neighborhood of $c_{i}=c_{j}$ in common, but this is impossible by construction.

Since each c_{i} is $\mathrm{n} \mathrm{acl}(\bar{b})$, this is a contradiction.
Corollary 1. Let D_{0}, D_{1} be as above and $I=D_{0} \cap D_{1}$. Then we have one of the following:
(a) $I=\emptyset$,
(b) I is an initial segment of D_{i} and a final segment of D_{j} and the two orders disagree,
(c) I is an initial segment of D_{i} and a final segment of D_{j} and the two orders agree, and
(d) $I=I_{1} \cup I_{2}$ where each of I_{1} and I_{2} are as in (b), or
(e) $I=I_{1} \cup I_{2}$ where each of I_{1} and I_{2} are as in (c).

Let \mathcal{L} be the set of definable subsets of M which are almost linear and transitive over some \bar{a}. If $D_{0}, D_{1} \in \mathcal{L}$, write $D_{0} \unlhd D_{1}$ if $D_{0} \cap D_{1}$ is as in case (b) or (d).

Say that $c \in M$ is of order type if there is $D \in \mathcal{L}$ such that $c \in D$. Let Ω be the set of $c \in M$ of order type. Define an equivalence relation \mathcal{E} on Ω by $c \mathcal{E} d$ if there are $D_{0} \unlhd D_{1} \unlhd \ldots \unlhd D_{k}$ with $c \in D_{0}$ and $d \in D_{k}\left(\right.$ or $d \in D_{0}$ and $c \in D_{k}$).

[^0]On each \mathcal{E}-equivalence class we have a definable separation relation $S(a, b, c, d)$ defined as follows. Every path as above from a to b contains either c or d. Note that D is really on the quotient of the class by a finite equivalence relation. ${ }^{1}$

2. The main theorem

Theorem 1. Assume that M has few substructures. Then there is a \emptyset-definable equivalence relation F with finite classes and a \emptyset-definable equivalence relation E on the quotient $M_{0}=M / F$ such that the following is true. Let $N:=M_{0} / E$, and M_{*} denote the reduct of M_{0} to pullbacks of definable subsets of N. Then M_{*} is stable, and

$$
f_{n}\left(M_{*}\right)=f_{n}\left(M_{0}\right)
$$

for all n.
Proof. F is interalgebraicity for points of order type and equality elsewhere. Then for $M_{0}=M / F, f_{n}\left(M_{0}\right) \leq f_{n}(M)$, so M_{0} also has few substructures.

Let E be the equivalence relation \mathcal{E} on M_{0} defined above (extended by $=$ on points which are not of order type). Let $N=M_{0} / E$.

Claim 2. N is stable.
Otherwise, as N is NIP, there would be a definable map $f: N \rightarrow V$ (V linearly ordered) which would lift to an almost linear subset of M_{0} contradicting the definition of E.

Define M_{*} as in the statement. Then M_{*} is stable. It just remains to see that $f_{n}\left(M_{*}\right)=f_{n}\left(M_{0}\right)$. I.e. a finite substructure $A \subseteq M_{*}$ has a unique expansion (up to isomorphism) to a substructure of M_{0}.

Proceed by induction on $|A|$. Write

$$
A=A_{0} \amalg A_{1} \amalg \cdots \amalg A_{k}
$$

where A_{0} consists of the points not of order type, and the remaining A_{i} consist of points of order type grouped by E-equivalence classes. We expand A to an M_{0} substructure one A_{i} at a time. At stage i the E-class of A_{i} has a structure over $A_{0} \ldots A_{i-1}$ which is isomorphic to one of the four unstable reducts of DLO. Therefore there is a unique embedding of A_{i} into M_{0} up to isomorphisms over the previous $A_{<i}$.

Theorem 2. Assume M has few substructures and is primitive. Then M is either stable or M is one of the four unstable reducts of DLO.

In fact we recover the classification of the unstable reducts of DLO.
Proof. As M is primitive F is equality, and E is either equality or empty and this gives us the two cases.

Corollary 2. Assume that for no polynomial p we have

$$
f_{n}(M) \geq \frac{\Phi^{n}}{p(n)}
$$

for $\Phi \approx 1.618$ is the golden ratio. Then M has a stable reduct M^{*} such that $f_{n}(M)=f_{n}\left(M^{*}\right)$.

[^1]Proof. We only need to show that F is equality. If it wasn't, then we get at least F_{n} substructures, where F_{n} is the nth Fibonacci number, and we know $F_{n} \sim \Phi^{n} / \sqrt{5}$.

Note that this is optimal because if we do take a trivial 2-cover of DLO, then $f_{n}(M)=F_{n}$. For any stable reduct $M_{*}, f_{n}\left(M_{*}\right) \leq n / 2$.

3. The stable case

We will now deal with the stable case and then consider more general NIP. What remains:

- Understand the stable case:
- ω stable: well understood,
- strictly stable: not well understood at all.
- generalize to $f_{n}(M) \sim c^{n}$ or even $f_{n}(M) \sim e^{2 n \log n}$.

Question 1. Are there uncountable many M such that $f_{n}(M) \sim e^{c n \log n}$?
The idea to approach this is the following. Reduce to finite homogeneous case and induct on the (pseudo-)arity.

Definition 1. The pseudo-arity of M is the minimal arity of a finitely homogeneous structure N in which M can be interpreted.

Example 1. The arity of the circular order is 3 , however the pseudo-arity is 2 .
Note that a structure of arity 2 cannot interpret a random 3-hypergraph. Similarly a structure of arity 2 cannot interpret a tree (T, \leq) with >1 branch above every node.

There is another parameter called the "dimension" which is the number of independent linear orders.
Example 2. The dimension of DLO is 1 , and DLO^{2} has dimension 1. We also want something with two independent linear orders to have $\operatorname{dim}\left(M, \leq_{1}, \leq_{1}\right)=2$.

The point is that somehow arity 2 is well understood, and as arity increases thins get more complicated. Trees are dimension 1 and arity 3 which is the first case which is somehow not well understood.

[^0]: Date: April 25, 2019.

[^1]: ${ }^{1}$ This is just interalgebraicity as we saw.

