LECTURE 26 MATH 229

LECTURE: PROFESSOR PIERRE SIMON NOTES: JACKSON VAN DYKE

In the last week we will treat the stable case.

1. Rank

Let M be an ω -categorical structure.

Definition 1. For a definable set D and ordinal α , we define rank $(D) \ge \alpha$ inductively:

- (i) rank $(D) \ge 0$ if $D \ne \emptyset$,
- (ii) rank $(D) \ge \alpha + 1$ if in M^{eq} there is a definable family $(X_{\overline{a}})$, where $\overline{a} \models \varphi(x)$, of subsets of D which is k-inconsistent¹ for some k for $k < \omega$ and rank $(X_i) \ge \alpha$ for all i.
- (iii) rank $(D) \ge \lambda$, λ limit if rank $(D) \ge \alpha$ for all $\alpha < \lambda$.

We say rank $(D) = \emptyset$ if rank $(D) \ge \alpha$ for all α .

Example 1. • If (M, \leq) is DLO then rank (M) = 1.

- The random graph has rank 1.
- If M is ω -stable then the rank is the Morley rank.
- The generic tree has infinite rank.

Note that (ii) is equivalent to the following: there is a definable $D'_{\downarrow\pi}$ with finite D

fibers and a definable equivalence relation on D' with infinitely many classes of rank $\geq \alpha$.

1.1. Properties of rank. First note that:

 $\operatorname{rank}(a/A) = \operatorname{rank}(\operatorname{tp}(a/A)) = \min \{\operatorname{rank}(D) \mid DA \text{-definable}, a \in D\}$.

We have the following properties:

- 1. rank (a/A) = 0 iff $a \in \operatorname{acl}(A)$
- 2. rank $(D_1 \cup D_2) = \max \{ \operatorname{rank} (D_1), \operatorname{rank} (D_2) \}$
- 3. If D is definable over S there is $a \in D$ with rank $(a/A) = \operatorname{rank}(D)$.
- 4. If rank (a/bc), rank (b/c) are finite, then rank $(ab/c) = \operatorname{rank}(a/bc) + \operatorname{rank}(b/c)$.

Date: April 30, 2019.

¹I.e. the intersection of any k of them is empty.

If rank $(M) < \omega$ we write $a \, {\rm b}_c b$ if

$$\operatorname{rank} (ab/c) = \operatorname{rank} (a/c) + \operatorname{rank} (b/c) \iff \operatorname{rank} (a/bc) = \operatorname{rank} (a/c)$$
$$\iff \operatorname{rank} (b/ac) = \operatorname{rank} (b/c)$$
$$\iff b \bigcup_{c} a .$$

Equivalently $a igsquarepsilon_E bc$ iff $a igsquarepsilon_{Ec} b$ and $a igsquarepsilon_E c$.

Note that if rank (D) = 1, then all has the exchange property on D. This means for $A \subseteq D$, $a, b \in D$ we have that $a \in \operatorname{acl}(Ab) \setminus \operatorname{acl}(A)$ iff $b \in \operatorname{acl}(Aa) \setminus \operatorname{acl}(A)$ which is equivalent to

$$\operatorname{rank}(Aab) = \operatorname{rank}(A) + 1 = \operatorname{rank}(Ab) = \operatorname{rank}(Aa)$$

What this means is that all defines a *pregeometry* on D.

A pregeometry is a closure operation that satisfies certain properties:

- $A \subseteq B \implies \operatorname{acl}(A) \subseteq \operatorname{acl}(B),$
- $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$:
- exchange property
- maybe another axiom...

The associated dimension is the rank.

Example 2. \mathbb{F}_p vector space is rank one and has a nontrivial acl.

If rank (D) = 1 and D is primitive then all defines a *geometry* on D. This means that we additionally have

- $\operatorname{acl}(\emptyset) = \emptyset$ and
- $\operatorname{acl}(\{a\}) = \{a\}$ for $a \in D$.

1.2. Main theorem.

Theorem 1. If M is finite homogeneous, rank (M) = 1, there is a unique n-type of an independent tuple for all n, then it has trivial geometry.

Proof. Assume M has rank = 1 and is primitive for $A \subseteq M$ finite. Let

$$(A)_{+} = \operatorname{cl}(A) - \bigcup_{B \subsetneq A} \operatorname{cl}(B)$$

Assume there is $\{a, b\}$ such that $(\{a, b\})_+ \neq \emptyset$.

Lemma 1. If $A \cup \{a\}$ is independent, $b \in (A)_+$, $c \in (\{a, b\})_+$, then $c \in (A \cup \{a\})_+$.

Proof. Assume there is $B \subsetneq A \cup \{a\}, c \in cl(B)$. If $B \subseteq A, c \in cl(A)$, by exchange, $a \in cl(\{b, c\}) \subseteq cl(A)$ which is a contradiction.

Otherwise, $B = B' \cup \{a\}$ for $B' \leq A$. Let $d \in A \setminus B$. By exchange $b \in cl(\{a, c\}) \subseteq cl(B)$,

$$b \in \operatorname{cl}(A \setminus \{d\} \cup \{d\}) \setminus \operatorname{cl}(A \setminus \{d\})$$
.

Again by exchange,

$$d \in \operatorname{cl}\left(A \setminus \{d\} \cup \{b\}\right) \subseteq \operatorname{cl}\left(\underbrace{A \setminus \{d\} \cup \{a\}}_{\supseteq B}\right)$$

so certainly B is in this closure. This contradicts the independence of $A \cup \{a\}$. \Box

Lemma 2. For any independent $A, A_0, A_1 \subseteq A \ (A_0 \neq A_1)$ then

$$(A_0)_+ \cap (A_1)_+ = \emptyset .$$

Proof. True iff $A_0 \subseteq A_1$ or $A_1 \subseteq A_0$. Otherwise we can find $c_0 \in A_0 \setminus A_1$ or $c_1 \in A_1 \setminus A_0$ and contradict independence.

Let $d \in (A_0)_+ \cap (A_1)_+$. Then by exchange

$$c_0 \in \operatorname{cl}(A_0 \setminus \{c_0\} \cup \{d\}) \qquad \qquad c_1 \in \operatorname{cl}(A_1 \setminus \{c_1\} \cup \{d\})$$

so $A \subseteq cl(A \setminus \{c_0, c_1\} \cup \{d\})$ which is a contradiction to the fact that rank (A) = |A|.

Now let A be an independent set of size n by induction (by first lemma), for all nonempty $B \subseteq A$, $(B)_+ \neq \emptyset$. By the second lemma we get 2^n many one-types over A. This contradicts finite homogeneity.

In general assume $n \ge 2$ is minimal such that

$$(\{a_1,\ldots,a_n\})_+\neq \emptyset$$
.

Then add a_1, \ldots, a_{n-2} as constraints to the language and apply the previous case.

Definition 2. A definable set D is *strongly-minimal* if any parameter-definable subset of D is finite or co-finite.

If D is strongly-minimal then rank (D) = 1 and any two independent n-tuples have the same tuple.

The conclusion is that a strongly minimal primitive set definable in a finitely homogeneous structure is an indiscernible set, i.e. isomorphic to (A, =).

2. Binary structure

Proposition 1. Let M be a binary structure. Then rank $(M) < \omega$.

Proof. Assume rank $(M) \geq \omega$. Fix $N < \omega$ sufficiently large. We can find:

- An increasing family (c(n) | n < N) of finite tuples,
- a c(n)-definable set D_n transitive over c(n),
- a c(n) definable family $(X_t^n | t \in E_n), k(n)$ -inconsistent, where there exists some t such that $D_{n+1} \subseteq X_t^n$.

Claim 1. We can assume $X_t^n \cap X_{t'}^n$ is finite for $t \neq t'$.

To see this replace X_t^n by the max infinite intersections $X_{t_1} \cap \ldots \cap X_{t_k}^n$.

Claim 2. For each *n* there are $x, y \in D_n$ such that for no $t \in R_n$ do we have both $x_n \in X_t, y_n \in X_t$.

We assume this for now.

For each $n \text{ let } \varphi_n(x, y)$ say that for some t we have $x \in X_t$, $y \in X_t$. By binary, on D_n we have that $\varphi_n(x, y)$ is equivalent to a \emptyset -definable formula $\psi_n(x, y)$. We have $\psi_n(x_n, y_n)$, and for m < n we have $\psi_m(x_n, y_n)$ so the ψ_n s are pairwise distinct which is impossible.