LECTURE 27

MATH 229

LECTURE: PROFESSOR PIERRE SIMON

NOTES: JACKSON VAN DYKE

1. Stable case

1.1. Setup and statement of the theorem. Today we will (hopefully) finish the stable case.

Let M be an ω-stable (ω-categorical) structure. We didn't define ω-stable, so we will restrict to the case that M is finitely homogeneous and stable, but everything we say will be true in this generality. In particular, the features of ω-stability that we will use are the following:
(i) M is ranked (in fact we will assume finite rank^{1}).
(ii) If we have a definable subset $X \subseteq M^{k}$ which has rank n, there is $X_{0} \subseteq X$ of rank n and indivisible in the sense that it cannot be split into two disjoint sets of rank n.
(iii) If X is defined over $a X_{0}$ cannot be defined over $\operatorname{acl}^{e q}(a)$.
(iv) If $\varphi(\bar{x}, \bar{y})$ is a formula there is a normalization $\varphi^{*}(\bar{x}, \bar{y})$ such that

- $\operatorname{rank}\left(\varphi(\bar{x}, \bar{y}) \Delta \varphi^{*}(\bar{a}, \bar{b})\right)<n$
- $\forall \bar{b}, \overline{b^{\prime}} \models q$
$\operatorname{rank}\left(\varphi^{*}(\bar{x}, \bar{b} \Delta) \varphi^{*}\left(\bar{x}, \overline{b^{\prime}}\right)\right)<n \quad \Longrightarrow \quad \varphi^{*}(\bar{x}, \bar{b})=\varphi^{*}\left(\bar{x}, \overline{b^{\prime}}\right)$
Let P be a \emptyset-definable set $M^{e q}$. Say that P coordinatizes M if for all $a \in M$

$$
\operatorname{acl}(a) \cap P \neq \emptyset .
$$

Theorem 1. Let M be ω-stable, ω-categorical, (of finite rank). There exists is a rank 1 set (finite rank, strongly minimal) which coordinatizes M.
Corollary 1. If M is primitive then M is a Grassmannian over a (finite union of) strongly minimal set(s).

1.2. Proof of the theorem.

1.2.1. Aside on strongly minimal. Let X, Y be \emptyset-definable, strictly minimal (i.e. $\operatorname{acl}(a)=\{a\})$ then either

- there is a unique \emptyset-definable bijection between X and Y, or
- X, Y are orthogonal: $\bar{a} \in X^{k}, \bar{b} \in Y^{l}, \bar{a} \downarrow \bar{b}$.

Proof. For X, Y indiscernible sets take $\bar{a} \in X^{k}, \bar{b} \in Y^{l}$ such that $\bar{a} \notin \bar{b}$ where $k+l$ is minimal. There is $x_{0} \in Y \cap \operatorname{acl}(\bar{a})$ (look at $\operatorname{tp}(\bar{b} / \bar{a})$ this is not Y^{l} so some element of Y^{l} is in acl of $\left.\bar{a}\right)$. Then $\bar{a} \not \subset b_{0}$ so $l=1$, and $k=1$ by symmetry.

[^0]Note that if $\bar{b} \in Y^{k}\left(x_{i} \neq b_{j}\right.$ for $\left.i \neq j\right)$ then $\operatorname{rank}(\bar{b})=k$. If $a \in X, \operatorname{rank}(a)=1$ so $\operatorname{rank}(\operatorname{acl}(a))=1$ so $|\operatorname{acl}(a) \cap Y| \leq 1$. This means $|\operatorname{acl}(a) \cap Y|=1$ which gives us a definable bijection.

Now the following is a consequence of uniqueness. Let $X_{1} \ldots X_{n}$ be strictly minimal and assume $\left(X_{i}, X_{j}\right)$ are orthogonal for $i \neq j$. Then for $\overline{a_{i}} \in X_{i}^{k_{i}}$

$$
\operatorname{rank}\left({\overline{a_{1}}}^{n} \wedge \ldots \wedge \overline{a_{n}}\right)=\sum \operatorname{rank}\left(\overline{a_{i}}\right) .
$$

1.2.2. Back to the proof. Write $\operatorname{rank}(M)=n$ and assume M is indivisible. There is $\varphi(x, \bar{b})$ of rank $n-1$. Write $q=\operatorname{tp}(\bar{b})$ We can assume

- $\varphi(\bar{x}, \bar{y})$ is normalized
- $\varphi(x, \bar{b})$ is indivisible for $\bar{b} \models q$.
- $\bar{b} \neq \overline{b^{\prime}}$ implies $\varphi(X, \bar{b}) \neq \varphi\left(x, \overline{b^{\prime}}\right)$ (taking $\left.\bar{b} \in M^{q}\right)$.

Then the goal is to show $\operatorname{rank}(\bar{b})=1$.
Let $F=\operatorname{tp}(\bar{b})$ definable set. Assume $\operatorname{rank}(f) \geq 2$. Let $I(\bar{d}) \subseteq F$ be a strongly minimal definable subset. Let $H(\bar{d})$ be the associated strictly minimal definable subset. We can assume $\bar{d} \in \operatorname{acl}(\emptyset), q=\operatorname{tp}(\bar{d})$.

Claim 1 (Main claim). If $\overline{d_{1}} \downarrow \overline{d_{2}}$, then $I\left(\overline{d_{1}}\right) \Delta I\left(\overline{d_{2}}\right)$ is finite.
Proof. Assume not, then $I\left(\overline{d_{1}}\right) \cap I\left(\overline{d_{2}}\right)$ is finite. Take $\overline{d_{1}}, \ldots, \overline{d_{N}}$ indiscernible independent N large.

Let $e=d_{1} \wedge \ldots \wedge d_{N}$. Let

$$
Q=\{x \in M \mid \operatorname{rank}(x / e)=n\} .
$$

Then Q is transitive over e since M is indivisible.
For a given i,

$$
\bigcup_{\bar{b} \in I\left(\overline{d_{i}}\right)} \varphi(x, \bar{b})
$$

has rank n. so for all $x_{0} \in Q$, for all i there is $\bar{b} \in I \overline{d_{i}}$ such that $\varphi\left(x_{0}, \bar{b}\right)$ holds.
We work over e.
Claim 2. If $a \in Q$ and $\varphi(a, \bar{b})$ holds with $\bar{b} \in I\left(\overline{d_{i}}\right)$ for some i. Then $\bar{b} \in \operatorname{acl}(a)$.
Proof. Otherwise a is in almost all $\varphi\left(x, \overline{b^{\prime}}\right)$ for $\overline{b^{\prime}} \in I\left(d_{i}\right)$. But then for any two, we can intersect them and

$$
\operatorname{rank}\left(\varphi(x, \bar{b}) \cap \varphi\left(x, \overline{b^{\prime}}\right)\right)=n-1
$$

which means

$$
\operatorname{rank}\left(\varphi(x, \bar{b}) \Delta \varphi\left(x, \overline{b^{\prime}}\right)\right)<n-1
$$

which contradicts normalization. Now we have two cases:
case 1. $H\left(\overline{d_{1}}\right) \ldots H\left(\overline{d_{N}}\right)$ are orthogonal.
case 2. There is a unique \emptyset-definable set between $H\left(\overline{d_{i}}\right)$ and $H\left(\overline{d_{j}}\right)$.

Assume case 1. Then for any $a \in Q, \operatorname{acl}(a) \cap H\left(\overline{d_{i}}\right) \neq 0$ for all i so $\operatorname{rank}(a) \geq$ $N>n$ which is a contradiction.

Assume case 2.
Claim 3. $\operatorname{rank}\left(\operatorname{acl}(a) \cap\left(H\left(\overline{d_{1}}\right) \cup \ldots \cup H\left(\overline{d_{N}}\right)\right)\right) \geq N$.

Proof. For $\overline{b_{1}} \in I\left(\overline{d_{1}}\right)$ and $\overline{b_{2}} \in I\left(\overline{d_{2}}\right)$ we have

$$
\operatorname{rank}\left(\varphi\left(x, \overline{b_{1}}\right) \cap \varphi\left(x, \overline{b_{2}}\right)\right)<n-1
$$

so if $a \in \varphi\left(x, \overline{b_{1}}\right) \cap \varphi\left(x, \overline{b_{2}}\right)$ then

$$
\operatorname{rank}\left(a / \overline{b_{1}}\right)=n-1 \quad \operatorname{rank}\left(a / \overline{b_{1} b_{2}}\right) \leq n-2
$$

so

$$
\operatorname{rank}\left(\overline{b_{2}} / \overline{b_{1}}\right) \geq 1
$$

so

$$
\overline{b_{2}} \notin \operatorname{acl}\left(\overline{b_{1}}\right) .
$$

So we got the same contradiction.
So if we take for each $i, \overline{b_{i}} \in I\left(d_{i}\right)$ for each i then $\varphi\left(a, \overline{b_{i}}\right)$ holds

$$
\operatorname{rank}\left({\overline{b_{1}}}^{n} \wedge \ldots \wedge \overline{B_{N}}\right) \geq N
$$

so $\operatorname{rank}(a) \geq N$ which is a contradiction.
This being done, normalize the family $I(\bar{b})$ into $I^{*}(\bar{b})$. Then

$$
I^{*}\left(\overline{b_{1}}\right)=I^{*}\left(\overline{b_{2}}\right)
$$

for $\overline{b_{1}} \downarrow \overline{b_{2}}$ so

$$
I^{*}\left(\overline{b_{1}}\right)=I^{*}\left(\overline{b_{2}}\right)
$$

for all $\overline{b_{1}}, \overline{b_{2}} \models q$ so $\operatorname{rank} F=1$.
By the proof, F coordinatizes M.

[^0]: Date: May 2, 2019.
 ${ }^{1}$ There is an extra step to get infinite rank which would happen at the end, but we won't have time to treat this.

