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The title of this lecture is

a day at the zoo: examples.

This is typically a subject where there are very few general theorems, and one
tests a technique by running through examples, so it is important to know them.

1. Stable structures

Consider the structure X0 = (X,=) where X is some countable set. Aut (X0) is
the full symmetric group Sym (X). One thing we can do is try to build finite covers
of X0. A finite cover1 is an ω-categorical structure M with a projection

M

X0 'M/E

π

where E is a definable equivalence relation on M with finite bounded classes. The
fact that the quotient M/E is exactly X0 means there is no extra induced structure,
i.e. there are no extra 0-definable sets. Equivalently, the canonical map Aut (π) :
Aut (M)→ Aut (X0) is surjective.

Example 1. A 2-cover is a finite cover where the equivalence classes have size 2.
An immediate example is given by the disjoint union M = X0×{0}∪X0×{1} with
the canonical projection. The automorphism group Aut (M) = Aut (X0)× Z/2Z.

Example 2. Another 2-cover of X0 is given by putting 2 points above every points
of X0. So we have the equivalence relation mapping to X0, but not the equiva-
lence relation giving us the two copies. This is a reduct of the first one. So now
the automorphism group is much bigger. In particular it is the wreath product
Aut (X0) o Z/2Z.

Exercise 1 (*). Prove these are the only two transitive 2-covers.

Example 3. Now we construct 4-covers. If we put 4 points over every point of X0,
with the following arrows:

(1)

·

· ·

·

Date: January 31, 2019.
1This same definition holds for any structure.
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so the fibers are independent and the automorphism group is again the wreath
product Aut (X0) oZ/4Z, i.e. because of the arrows the only automorphisms of the
fibers are rotations.

Now we could of course trivialize everything as with the 2-covers and get a
direct product, or we could try to do something in between. I.e. we can also add
an equivalence relation which has 2-classes that picks out 2 opposite points. In
particular, we can take the top and bottom points in each fiber to be equivalent to
the top and bottom points in every other fiber. Of course if we just look at each
fiber, we just have this Z/4Z acting on it, but now the fibers aren’t completely
independent. If we rotate one fiber by 1, it doesn’t force us to turn the other fibers
exactly by 1, but it does force us to either rotate it by 1 or 3. So the automorphism
group is something in between Aut (X0)× Z/4Z and Aut (X0) o Z/4Z.

So in the 2-cover case, we couldn’t sort of mix the situations, we only had these
two. But now we have discovered a 4-cover which is sort of in between the two
extremes. This turns out to somehow be as complicated as it gets.

Now a much more fun and complicated situation is the following sort of example:

Definition 1. The 2-Grassmannian of X0 is the set of 2-element subsets of X0

with the induced structure.

The idea is that each point is a 2-element subset, and then there is an edge
whenever two of these subsets intersect.

Example 4. There is an interesting 4-cover of this. Above every point we can put
4 points, as in (1), except now we have 1 equivalence relation with classes of size 2,
where each class is mapped to an elements in X0. The picture is like this:

•

• •

•

{1, 2}

1 2

where the lines without arrows denote the 2-classes, and the color of the arrow
mapping to X0 indicates the corresponding class.

Proposition 1. This structure is not interpretable in X0.

This is hard to prove, but we can at least see it isn’t obviously interpretable. Say
we introduce 4 parameters a, b, c, and d and then the points in a fiber are labelled
by the pair of element of X0 and one of the new parameters. So maybe we identify
((1, 2) , a) with ((2, 1) , c) But then we don’t know what to send to 1, and what to
send to 2 because of the orientation of the arrows. But then we have to check that
no other identification works either. Note however that it is interpretable in DLO.

Example 5. Let M be the set of 4-element subsets of X0 equipped with a partition
into two sets of size 2. This is interpretable in X0. Also, M is ω-categorical,
but cannot be made homogeneous in a finite relational language. I.e. it is not
interdefinable with a structure which is homogeneous in a finite relational language.
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Exercise 2. Show that this is true.

Remark 1. We know that a structure being ω-categorical means there are only
finitely many n-types for any n. So what is the extra property we get from being
homogeneous in a finite relational language which is not syntactic? As it turns out,
an ω-categorical structure M is interdefinable with a structure homogeneous in a
finite relational language of maximal arity k iff n-types are determined by their
k-subtypes. In other words∧

i1<...<ik<n

tp (ai1 · · · aik) ` tp (a1 · · · an) .

This is surprising, however if we built the same M starting with DLO instead
of X0, then we get a finitely homogeneous structure. I.e. once we have an order,
everything trivializes. This gives an example of a reduct of a finitely homogeneous
structure which is not finitely homogeneous.

Theorem 1 (Lachlan). Every fintiely homogeneous stable structure (in particular
finite covers of X0) is interpretable in DLO.

Remark 2. Note that DLO is not stable.

2. Orders

Linear orders are easy to deal with. DLO is the unique linear order which
is homogeneous in the language consisting of just {≤}. Partial orders become
more complicated. We might ask the same question of which partial orders are
homogeneous in {≤} (the language with just a partial order symbol). There is a
classification of this due to Schmerl:

(1) DLO
(2) Fraissé limit of all partial orders. (This exists and is unique as a consequence

of partial orders having amalgamation.)
(3) X0

(4) Dense chain of antichains. This is where we put an anti-chain of size ≤ ℵ0
above every point of DLO.

(5) Disjoint union of chain. So an anti-chain of chains of a fixed size ≤ ℵ0.

Exercise 3 (*). Show that any ω-categorical structure has an expansion by adding
a linear order in such a way that it remains ω-categorical.

3. Graphs

The classification of homogeneous2 graphs is due to Lachlan-Woodrow:

(1) Random graph
(2) Empty graph/complete graph
(3) Kn-free random graphs and complements of these.
(4) Disjoint union of cliques of the same size (includes some finite graphs).
(5) C5 (Note C4 is the complement of the equivalence relation with two classes

of size 2, so included in the previous one and C6 is not homogeneous)
(6) K3 ⊗ K3 = {(a, b) | 1 ≤ a ≤ 3, 1 ≤ b ≤ 3} where we put an edge between

(a, b) and (c, d) iff a 6= c and b 6= d.

2In the language of graphs.
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4. Metric spaces

In this course, a metric space is presented in a binary language where we have
one binary relation for every possible distance. Specifically the language

{dr (x, y) | r ∈ Rr≥0}
such that:

(i) dr (x, y) ∧ ds (y, z) ∧ dt (x, z) =⇒ r ≤ s+ t,
(ii) dr (x, y) ⇐⇒ dr (y, x),

(iii) d0 (x, y) ⇐⇒ x = y,
(iv) dr (x, y) ∧ ds (x, y) =⇒ r = s,
(v) ∀x, y

∧
r∈R≥0

dr (x, y).

For S ⊆ R≥0, an S-metric space is the same but with only {dr (x, y) | r ∈ S}.

Example 6. For S = {0, 1}, this is just equality. For S = {0, 1, 2}, this is just a
graph where edges are given by distance 1, nonedges are given by distance 2, and
0 is equality.

Question 1. Given S, does the class of S-metric spaces have amalgamation?

For S = Q, the answer is yes, and the Fraissé limit (which is not ω-categorical)
is called the rational Urysohn space. If S is closed under +, then the same.

Example 7. For S = {0, 1, 3, 4, 5} there is no amalgamation:

· ·

·

·

1

3

5

1

4

since the dotted path cannot be filled in with anything satisfying the triangle in-
equality.
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