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Today we will do something fun and somewhat unrelated to the previous topics.

1. ω-categorical groups

Let G be an infinite ω-categorical group. Recall this means there are only finitely
many n-types for any n. Note the following immediate observations:

Observation 1. G is locally finite.1

Proof. This is true because if a ∈ G is a finite set, then the elements of 〈a〉 have
distinct types. �

In fact, G is uniformly locally finite. In particular there is some n such that for
all g ∈ G, gn = e. In this case we say that G is of bounded exponent.

Observation 2. If G is abelian and of bounded exponent, then the pure group
(G,+) is ω-categorical.

Proof. First we have the following:

Fact 1. An abelian group of bounded exponent is a direct sum of cyclic groups of
prime power orders.

Exercise 1. Prove this. This is effectively a group theory question.

Now we need to prove that such groups are ω-categorical. To prove this it suffices
to find sentences that completely characterize one given group in this class:

G =
⊕
p,n

(Z/pnZ)
spn .

In other words, we need to find formulas that give the spns.
For this, we use Ulm invariants. Let

Pp,q = {x ∈ G | px = 0} ∩ pkG

and

fp (k − 1) = dim (Pp,k−1/Pp,k)

where we view these quotients as Fp vector spaces. Note that

spk = fp (k − 1) ∈ N ∪ {∞} .

This is first-order definable, so we are done. �

Date: February 5, 2019.
1 That is, every finitely generated subgroup is finite.
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So the abelian case is settled. The nonabelian case is much more interesting,
and in some ways open.

Fact 2. An infinite locally finite group has an infinite abelian subgroup.

Warning 1. The proof of this is not an exercise. It is a few pages long.

Corollary 1. An infinite ω-categorical group has a subgroup isomorphic to Fω
p for

some p.

Theorem 1 (MacPherson). A finitely homogeneous structure does not interpret an
infinite group.

The idea of the proof is the following. Why is Fω
p not finitely homogeneous? We

can take a basis a1, · · · , an, · · · and consider the tuples (a1, · · · , an,
∑n

i=1 ai) and
(a1, · · · , an+1). The types of these are not the same, but the type of any two tuples
of length n− 1 inside these is the same, which is a contradiction.

Proof. Let G be definable in a finitely homogeneous structure M, and let V ⊆ G
be an infinite Fp vector space in G. Now we want to apply the Ramsey argument.
Fix a linear order < on Fp, and fix a basis (vi | i < ω) of V . Now we want to find a
sub-vector space which is somehow homogeneous, so all bases have the same type.

If W ⊆ V is a finite dimensional subspace, define the canonical basis of W as the
basis whose matrix in the vis is in row-reduced form. This identifies W uniquely.
Let t be the maximal arity of the (finite relational) language. We color subspaces
of V of dimension t according to the type of the canonical basis.

Fact 3. For all r, t, k < ω, and finite field F, there is some N such that any coloring
of t-dimensional subspaces of FN in r colors has a k dimensional homogeneous2

subspace.

Using the fact, let W ⊆ V be a t + 1-dimensional homogeneous subspace. Let
(u0, · · · , ut) be its canonical basis. Consider the tuples:

w1 = (u0, · · · , ut−1, u0 + · · ·+ ut−1) w2 = (u0, · · · , ut−1, u0 + · · ·+ ut) .

Note that clearly tpw1 6= tpw2. However, if we restrict to a subtuple of size t, say

s1 = (u0, · · · , ûj , · · · , ut−1, u0 + · · ·+ ut−1)

s2 = (u0, · · · , ûj , · · · , ut−1, u0 + · · ·+ ut)

where we have omitted uj , then we claim tp s1 = tp s2. The canonical basis
of Vect (s1) is u0, · · · , ut−1 and the canonical basis of Vect (s2) is u0, · · · , uj +
ut, uj+1, · · · , ut−1. By homogeneity of W , they have the same type. Now s1 and
s2 are expressed by the same term in their respective bases, so they have the same
type. This contradicts the fact that the language has arity t. �

2. Structure of ω-categorical groups

Theorem 2. Let G be an ω-categorical group. Then G has a finite series

1 < G0 < G1 < · · · < Gn = G

where each Gi is characteristic3 and each Gi+1/Gi is either:

2This means all t dimensional subspaces have the same color.
3This is a subgroup invariant under all automorphisms of the group. This certainly means

the subgroup is normal, but it also means it is definable. In particular, if the group has no other

structure, this is the same as a definable subgroup.
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(i) abelian,
(ii) isomorphic to PR (where P is a finite simple group, and R is either a finite

number, or it is the boolean ring V0 or V1), or
(iii) an infinite ω-categorical, non-abelian, characteristically simple p-group.

Now we explain some aspects of the theorem. First note that a finite non-abelian
characteristically simple group is of the form Pn, for P a simple group and n < ω.
Now we explain these groups defined using boolean rings. For G any finite group,
the structure of GV0 , an infinite ω-categorical group, is the following:

• Its universe consists of continuous maps from K (Cantor space) to G. Or
equivalently, denoting by B the unique countable atomless boolean algebra,
such a map is given by a finite sequence of the form (B1, g1) · · · (Bn, gn) for
gi ∈ G where (B1, · · · , Bn) is a partition of B.
• Multiplication is defined coordinate-wise on K.

For GV1 , instead of taking Cantor space, we remove a point. So we have a locally
compact space. Then we look at maps K\{∗} → G which are compactly supported,
i.e. near ∗ it is the identity.

Exercise 2. Convince yourself that these groups are not elementarily equivalent.

Exercise 3 (*). If G is not abelian, then the infinite product Gω is never ω-
categorical. [Hint: Show there are infinitely many 1-types by counting the number
of conjugates.]

Now we discuss the third case in the theorem. It is not known if such a thing
exists. In fact, it is conjectured that there is no such object. It is worth noting that
infinite p-groups can be quite complicated. For example, there are these Tarski
monsters, which are infinite groups all of whose proper subgroups have order p.

Theorem 3 (Olshanskii). Tarski monsters exist and are simple.
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