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1. EPPA for Kn-free graphs

Recall we were proving that Kn-free graphs have EPPA.

Proof. Let A be a Kn-free graph, and let B be the EPPA witness of A as a general
graph. Then we want to build some B by lifting B0 in such a way that it is Kn-free.
Then we need A to embed into B, and automorphisms of B0 to extend to B:

B

A B0

π .

Define B as follows:

V (B) = {(v, tr) | v ∈ B0}
where tr is a function assigning a value in {0, · · · , n− 2} to every n-clique containing
v. Then we have an edge ((v, tv) , (w, tw)) ∈ E (B) iff (v, w) ∈ E (B0) and for any
clique c containing v, we have fv (c) 6= fw (c). By construction, B has no n-cliques.
Note that we can embed A into B (lifting the embedding A ↪→ B0) by assigning
values to cliques in an injective way. The point is that every clique of B0 has at
most n− 1 points in A.

The automorphisms of B are as follows. First we can lift every automorphism
of B0 in a natural way. To do this, we send:

ϕ̃ : (v, tv) 7→
(
ϕ (v) , tv ◦ ϕ−1

)
.

Another kind of automorphism is as follows. For any clique c in B0 and σ ∈
Sym ({0, · · · , n− 2}) we have θc,σ ∈ Aut (B) such that

θc,σ : (v, tv)→ (v, t′v)

where t′v sends

t′v :

{
k 7→ tv (k) k 6= c

c 7→ σ ◦ tv (c)
.

Now we need to show that every automorphism of A extends to one of B. Let
f : A 99K A. We already know f extends to ϕ ∈ Aut (B0) which gives ϕ̃ ∈ Aut (B)
which agrees with f on the projection to B0. For any clique c of B0, the image of f
(seen as f : B 99K B) has at most n− 1 points (v, tv) where tv is defined on c and
the values are all different. Similarly, to any such ϕ, the points (w, tw) in ϕ̃ (dom f)
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take different values on c. Hence there is some σ ∈ Sym ({0, · · · , n− 2}) such that
θc,σ ◦ ϕ̃ and f agree on the values at c. �

Exercise 1. Prove EPPA for 3-hypergraphs.1 [Hint: take the valuations to give
value in {0, 1}, and put a hyperedge if the sum of the values is odd/even.]

2. EPPA for metric spaces

Recall that for us, a metric space is a structure in a binary relational language
where we have one binary relation for every possible distance. The general idea
for proving EPPA is to regard it as a colored graph with edges between every two
points. Assume we can find an EPPA witness B0 for this as a colored graph.2 Now
we want to complete this to a metric space. One obstruction to completing B0 is
having a bad cycle, i.e. a cycle where one edge has distance larger than the sum of
the others in the cycle. As it turns out we have the following:

Claim 1. The only obstruction to completing a metric space is the existence of
bad cycles.

Proof. For any a, b ∈ B, a 6= b then set dist (a, b) to be

min
{∑

dist (ci, ci+1) | a = c0, c1 · · · , cn = b; dist (c, c+ 1) is defined in B
}
.

If this set is empty, i.e. there is no path between them, set dist (a, b) to be some
large fixed distance.

The only thing to check is that we are not creating any triangles which fail the
triangle inequality. It is enough to check that when we add one such distance,
we have not created a bad cycle. Assume we have a bad cycle b. The new edge
cannot be the large edge of the cycle by construction, because if a >

∑
bi, then a

is defined as the minimum of all such things, so we have a contradiction. Now let
the new value be one of the small edges of a bad cycle, say b1. By definition, there
exists a path c such that the sum of the ci is equal to the new edge, but now the
concatenation of the bad cycle without b1 and the path c is a bad cycle, so we must
have had one to begin with, which is a contradiction. The picture is:

· · ·

·

· · ·

c0

c1

b0

a

c2 b2

b1
b3

Note that all automorphisms of B are preserved. �

This is saying that having a partial metric space is not something to be concerned
about. So to prove EPPA for metric spaces, it is enough to construct an EPPA
witness as a partial metric space (with no bad cycles). Now we want to lift this in
the same way as we did for Kn free graphs. There are two issues to deal with. The
first is that we might have bad cycles of arbitrarily large size. This turns out to not
be so bad, since we won’t add any new distances until we complete it at the end.

1Or just for n-hypergraphs.
2The idea is to first give valuations for every edge, then treat possible multiple colors like we

treated the cliques in the Kn free case.
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The other problem is that the argument we had before doesn’t work exactly. If
we lift and try to just break up the cycles by insisting that their assignment don’t
match, we can’t detect if cycles are bad because somehow these things will only
disagree in pairs. The proof that does work is the following.

Proof of EPPA for metric spaces. Let A be a metric space. Take B0 an EPPA
witness for A as a colored graph. Now we want to build B which projects to B0

such that A embeds into it, where B has no bad cycle. We restrict to the minimal
bad cycles, i.e. it has no internal edges and doesn’t repeat a vertex. Explicitly
define B by:

V (B) = {(v, tv) | v ∈ V (B0)}
where tv gives a value in {0, 1} to every cycle {c0, · · · , cn−1} containing v. I.e. for
every enumeration of the cycle it assign either 0 or 1.

Now define dist ((v, tv) , (w, tw)) = d iff we have that dist (v, w) = d, and for
every induced cycle c = {c0, · · · , cn−1} containing v w we have one of the two
cases:

• if there exists i < n− 1 such that

{v, w} = {ci, ci+1}
then this implies tv (c) = tw (c)
• if {v, w} = {c0, cn−1} then this implies tv (c) 6= tw (c).

The idea is that for each bad cycle, we follow one copy of it in B, and when we
reach the end we jump over to the other copy, follow this, and then close it up.

First we need to check that A embeds in B. We know A can contain at most 2
points from any bad cycle, which must be consecutive since every pair of points in
A has a distance. Then we can just embed A by a ‘greedy’ algorithm.

Now notice that the minimum size of a bad cycle increases when we pass from
B0 to B. This is sufficient because of the following. Since we know the values
in A, there is a maximal size a bad cycle can have.3 Consider some bad cycle in
B. First assume it maps injectively, it means we had a bad cycle to begin with,
except there are possible extra edges on the interior. But if this is the case, it is not
induced, which means there is an induced bad cycle inside, so it is smaller. If it is
already induced, then this contradicts the construction. Now if it is not injective,
this means we are somehow collapsing two points, in which case we obtain two new
cycles, but then the same long edge creates a smaller bad cycle as well.

As usual, the automorphisms of B0 lift to automorphisms of B. Then for any
bad cycle c we can flip 0 ↔ 1 on c. For any partial automorphism of A, any bad
cycle intersects A in at most two points, and the usual argument holds that this
extends to B by flipping 0s and 1s as needed. �

3This is something like (max /min) + 1.
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