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1. Classical mechanics

Recall we left off explaining some classical mechanics. Consider some Lagrangian
function L : TX → R. The idea is that the trajectory of a particle is described by
a path

γ : [a, b]→ X

which satisfies some conditions. The action is defined to be

A (γ) =

∫ b

a

L (γ (t) , γ′ (t)) dt ,

and then γ should be a critical point of A subject to the boundary conditions given
by fixed values of γ (a) and γ (b). In particular, γ is a critical point of A iff in
local coordinates x1, · · · , xn on X, v1, · · · , vn on TX γ satisfies the Euler-Lagrange
equations:

(1)
∂L

∂xi
=

d

dt

∂L

∂vi

for all i = 1, · · · , n.

Example 1. Let X = Rn and L (x, v) = |v|2 /2−f (x). Then for a particle of mass
1, the first term is the kinetic energy, and the second term is the potential energy.
In this case, the equations (1) look like:

− ∂f

∂xi
=

d

dt
vi .

So with respect to time, the velocity is being pulled in the direction in which
potential energy is getting smaller.

Now we want to see that this is equivalent to the Hamiltonian version.1 In local
coordinates as above, define

yi =
∂L

∂vi
.

The idea is that these are supposed to be coordinates of T ∗X. The coordinate free
version of this is defining a map

L : TX → T ∗X .

Date: February 21, 2019.
1At least in nice cases.
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At a point (x, v) ∈ TX, L (x, v) is defined to be the derivative of L in the fiber
direction, i.e. a map

dx,v
(
L|TxX

)
: TvTxX = TxX → R .

This is called the Legendre transform. So these yi are the coordinates on the
cotangent bundle, i.e. any cotangent vector can be written:∑

i

yi dxi .

Note that L : TX → T ∗X isn’t necessarily a bundle map or anything, it’s just a
smooth map. But in good cases2 L is a diffeomorphism.

Example 2. Let g be a Riemannian metric. Then for

L (x, v) =
1

2
g (v, v)− f (x)

this L is the isomorphism TX ' T ∗X determined by g.

Henceforth assume we are in such a situation. So now we have an inverse map
L−1 : T ∗X → TX. Locally this looks like vi = Gi (x, y). Now define H : T ∗X → R
by

H (x, y) =
∑
i

yiGi (x, y)− L (x,G (x, y)) .

If we wanted to write this without coordinates the first term would just be pairing
tangent and cotangent vectors.

Now comes the confusing part.

Claim 1. Trajectories of the Hamiltonian vector field XH correspond to paths
γ : [a, b]→ X such that (γ, γ′) : [a, b]→ TX satisfies (1).

Proof. The tricky thing is that ∂H/∂xk is differentiating while keeping xj for j 6= k
and yj for all j fixed. Then ∂L/∂xi is differentiating while keeping xj for j 6= i and
all vj fixed. Now we can calculate:

∂H

∂xk
=
∑
i

yi
∂Gi (x, y)

∂xk
− ∂L

∂xk
(x,G (x, y))−

∑
i

∂L

∂vi

∂Gi
∂xk

but the first and last terms cancel by definition of yi, so this is just

∂H

∂xk
= − ∂L

∂xk
.

Now we have to do the other one which gives us:

∂H

∂yk
= Gk (x, y) +

∑
i

yi
∂Gi
∂yk
−
∑
i

∂L

∂vi

∂Gi
∂yk

and now the second two terms cancel, so

∂H

∂yk
= Gk .

2In particular if L is strictly convex and proper.
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Hamilton’s equations are:

dxk
dt

=
∂H

∂yk

dyk
dt

= − ∂H
∂xk

so the boxed equations give us

dxk
dt

= vk
d

dt

∂L

∂vk
=
dyk
dt

=
∂L

∂xk

and we are done. �

Then we have the following, which was our original reason for doing this:

Corollary 1. On a Riemannian manifold (X, g), the Hamiltonian vector field XH

for H (x, y) = |y|2 /2 on the unit (co)tangent bundle generates the geodesic flow.

Proof. Define L : TX → R by L (x, v) = |v|2 /2, then the Legendre transform is
the identification TX → T ∗X given by g and L ↔ H. So then trajectories of XH

correspond to critical points of the action functional

A (γ) =

∫ b

a

1

2
|γ′|2 dt ,

which are geodesics. �

2. Group actions on symplectic manifolds

2.1. S1 action. Consider an S1 action on (M,ω), i.e. for each θ ∈ S1 we have a
symplectomorphism ϕθ : (M,ω) → (M,ω) such that ϕθ1+θ2 = ϕθ1 ◦ ϕθ2 . This is
generated by the vector field

X =
d

dθ

∣∣∣∣
θ=0

ϕθ .

2.2. Hamiltonian actions.

Definition 1. An S1 action is called Hamiltonian if X is a Hamiltonian vector
field, i.e. X = XH for some H : M → R.

Remark 1. Since the Lie derivative LXω = 0 (because the action preserves ω),
we have dιXω ≡ 0, so ιXω is a closed 1-form. Then we have that the action is
Hamiltonian iff this 1-form is exact.

2.3. Symplectic quotient. Given a Hamiltonian S1 action on (M,ω) generated
by H, suppose c ∈ R is a regular value of H, and that S1 acts freely on the level
set H−1 (c). Then we can define the symplectic quotient to be:3

M//S1 = H−1 (c) /S1 .

Lemma 1. Let π : H−1 (c)→M//S1 denote the projection. Then there is a unique
symplectic form ω̂ on M//S1 such that π∗ω̂ = ω|H−1(c).

3Note that this depends on c, which is not reflected by this notation.
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Proof. Let p ∈ H−1 (c), and v, w ∈ T[p]
(
M//S1

)
. Take some ṽ, w̃ ∈ TpH

−1 (c)

such that π∗ṽ = v and π∗w̃ = w. We can find these because π∗ : TpH
−1 (c) →

T[p]
(
M//S1

)
is surjective with kernel Tp

(
S1 · p

)
= R {XH}. Define

ω̂ (v, w) = ω (ṽ, w̃) .

Note that if a symplectic form is defined at all it must be given by this formula.
So now we need to check it is well-defined and symplectic. This does not depend
on ṽ and w̃ because XH generates the symplectic complement of TH−1 (c). Now
note that this depends only on [p] and not p because ω is S1-invariant. ω̂ is closed
because π∗ω̂ is closed and π∗ is surjective:

dω̂ (u, v, w) = π∗ dω̂ (ũ, ṽ, w̃) = d (π∗ω̂) (ũ, ṽ, w̃) = 0 .

Finally this is nondegenerate since XH generates the symplectic complement of
TH−1 (c). �

Example 3 (Important). Let M = Cn+1 and

ω = ωstd =

n+1∑
i=1

dxi dyi .

Define H : Cn+1 → R by

H (z0, z1, · · · , zn) = π

n∑
i=0

|zi|2 .

Then we claim that XH generates an S1 action on Cn+1. Recall the equation is
that ω (XH ,−) = dH , so this says that

XH =
∑
i

∂H

∂yi

∂

∂xi
− ∂H

∂xi

∂

∂yi
.

In our particular case we have

XH =

n∑
i=0

2π

(
yi

∂

∂xi
− xi

∂

∂yi

)
︸ ︷︷ ︸

−∂/∂θi

.

The action is given by θ ∈ R/Z sending

(z0, · · · , zn) 7→
(
e−2π

√
−1θz0, · · · , e−2π

√
−1θzn

)
.

So now we need to choose a c to take the symplectic quotient. c < 0 would give
us the empty set which isn’t very interesting. c = 0 isn’t regular but c > 0 is
fine. Let’s take c = 1/π. Then H−1 (c) = S2n+1 and we get a symplectic form
on Cn+1//S1 = S2n+1/S1 = CPn. As it turns out this form is invariant under the
action of U (n+ 1), and on T[1:0:...:0]CPn this agrees with the standard symplectic
form sort of by construction. In fact, one way to specify this form would be to say
that it is the unique 2-form such that it is the standard form on such a tangent
space, and it is U (n+ 1) invariant. It maybe isn’t obvious that such a 2-form
exists, but this construction shows us that it does.

An explicit definition of the symplectic form on CPn is as follows. Where zj 6= 0,

ω =
i

2
∂∂̄ log

(
|z|2

|zj |2

)
.
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This is called the Fubini-Study form.

Remark 2. If X ⊂ CPn is a smooth complex variety, then ω|X is a symplectic form
on X. This gives us a huge collection of symplectic manifolds.

Proof. ω|X is closed because ω is closed to begin with. So we just gave to show
non-degeneracy. ω satisfies the equation

ω (v, w) = 〈Jv,w〉
where this is the inner product on CPn induced by the standard metric on S2n+1.
This is true because it holds on the tangent space, and holds elsewhere by U (n+ 1)
symmetry. Now ω|X is nondegenerate because if v ∈ TX is nonzero, then ω (V, Jv) =
〈JV, JV 〉 6= 0. �
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