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1. Group actions on Symplectic manifolds

1.1. S1-actions. Recall we were dealing with the following situation. Consider a
Hamiltonian S1 action on (M,ω) generated by XH where H : M → R. If c ∈ R is
a regular value of H on which S1 acts freely, then

H−1 (c) /S1 = M//S1

is the symplectic quotient.

Example 1. We did the example last time where (M,ω) =
(
Cn+1, ωstd

)
and

H = π |z|2. The corresponding symplectic quotient was CPn.

1.2. Torus actions. We write Tk = Rk/Zk.

Definition 1. A Hamiltonian Tk action on (M,ω) is a Tk action on (M,ω) together

with a “moment map” µ : M → Rk =
(
tk
)∗

such that:

(1) if v ∈ Rk = tk, then the derivative of the Tk action in the direction of v is
the Hamiltonian vector field of Hv = 〈µ (·) , V 〉, and

(2) µ is invariant under the Tk action.

Remark 1. There is a more general version of this where instead of Tk we have a
Lie group G. The first condition is the same, and the second condition says that it
is G-equivariant where G acts by the adjoint action.

If c ∈ Rk is a regular value of µ such that Tk acts freely on µ−1 (c), then

µ−1 (c) /Tk = M//Tk

is naturally a symplectic manifold. Note that

dim
(
M//Tk

)
= dim (M)− 2k .

1.3. Toric symplectic manifolds. We get an interesting class of symplectic man-
ifolds by considering the tori which give rise to a 0-dimensional symplectic quotient.

Definition 2. A (compact) toric symplectic manifold is a (compact) symplectic
manifold

(
M2n, ω

)
together with an effective Hamiltonian Tn action with moment

map µ : M → Rn.

These aren’t so interesting from the point of view of symplectic quotients since
they just give a point, but they are interesting examples of symplectic manifolds
that come up a lot.
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Theorem 1 (Atiyah-Guillemin-Sternberg, Delzant). • For a compact con-
nected toric symplectic manifold, µ (M) ⊂ Rk is a convex polytope. For
each vertex, there are n adjacent edges, whose vectors, after rescaling, are
in Zn and give a Z-basis for Zn.
• The map M 7→ µ (M) gives a bijection between compact, connected, toric

symplectic manifolds modulo isomorphism, and convex polytopes as above.

Example 2. Let M = CPn and µ : CPn → Rn be defined by

µ (z0 : · · · : zn) =
π
(
|z1|2 , · · · , |zn|2

)
|z0|2 + · · ·+ |zn|2

.

The action of (θ1, · · · , θn) ∈ Tn is given by

[z0 : · · · : zn] 7→
[
z0 : e2πiθ1z1 : · · · : e2πiθnzn

]
.

The image of µ is

µ (CPn) =
{
x ∈ Rn |xi ≥ 0,

∑
xi = π

}
.

For n = 2, this is just a right triangle with vertices at (0, 0), (π, 0), and (0, π).
The inverse image of the origin is the point [1 : 0 : 0]. The inverse image of (0, π)
is [0 : 0 : 1], and the inverse image of (π, 0) is [0 : 1 : 0]. The inverse image of the
point (π/2, 1) is the circle of all points of the form

[
1 : eiθ : 0

]
. The inverse image

of the whole bottom edge is the CP1 given by points of the form [z0 : z1 : 0], the
inverse image of the left edge is a CP1 given by points of the form [z0 : 0 : z2], and
the third edge is a CP1 given by points of the form [0 : z1 : z2]. The inverse image of
an interior point is a 2-torus consisting of points which look like

[
1 : eiθ1r1 : eiθ2r2

]
for fixed r1 and r2.

Fact 1. These are Lagrangian tori.

Now consider an inscribed similar triangle with right vertex at the origin. If we
draw a similar triangle also with right angle at the origin, then the long edge Then
the long edge (without endpoints) of this smaller triangle has inverse image a torus
cross an interval. If we include the endpoints we get S3. The inverse image of this
entire triangle is B4.

Another interesting thing to do is to remove this small triangle. This is still a
perfectly legitimate polytope, so by the above theorem, this corresponds to some
toric symplectic manifold.1 In particular this corresponds to CP2 blown up at a
point. This shorter diagonal edge is the exceptional divisor. The top diagonal edge
is the line at ∞ in CP2, so if we delete this edge, this has inverse image C2 blown
up at a point. This consists of the pairs (L, z) where L is a complex line through
the origin in C2, and z ∈ L. For nonzero z this determines L uniquely, but if z is 0,
L could be anything. So there is a projection from this to C2 which is a bijection
away from the origin. But at the origin, the inverse image is CP1.

Remark 2 (Blow-ups in 4-dimensions). In algebraic geometry, a point is removed
and replaced by CP1, which is called the exceptional divisor. In symplectic geome-
try, a 4-ball is removed and the boundary S3 is collapsed by identifying fibers of the

1As it turns out, the generic way to turn a polytope into a symplectic manifold is by taking the
polytope cross a torus, and then collapse the corners to points, and collapse the edges to circles.
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Hopf fibration to the S2. If you’re a 4-manifold topologist, then this is a connect

sum with CP2.

We can continue to chop off corners as long as we have an integer basis, e.g. if
we chop 4 corners off to get the following:

then this thing corresponds to CP2 blown up at 4-points. Each time we do it, we
pay the price of losing a bit of symplectic volume. In the 4-dimensional case this is
the same as the area of the polytope.

The rectangle in the plane corresponds to S2 × S2 since the cartesian product
of a polytope corresponds to the cartesian product of the symplectic manifolds.

Fact 2 (fun). In CPn, the Lagrangian n-torus given by the preimage of the center
of µ (CPn):

µ−1

(
π

(
1

n
, · · · , 1

n

))
is not displaceable. This can be proved using Lagrangian Floer homology.

It is also true that all other fibers µ−1 (x) (where x is in the interior of the
moment map image) are displaceable (this is at least know for n ≤ 3).

2. Almost complex structures

Let
(
M2n, ω

)
be a symplectic manifold. An almost complex structure on M is

a bundle map J : TM → TM such that J2 = −1. This makes TX into a complex
vector bundle. We want to insist that these have some sort of compatibility with
our symplectic form.

Definition 3. J is ω-compatible if the bundle map

TM ⊗ TM R

(v, w) ω (v, Jw)

g

is a positive definite inner product on TM . I.e. g is a Riemannian metric on M .

First of all this means that g is symmetric, i.e. g (v, w) = g (w, v). But this is
equivalent to:

ω (v, Jw) = ω (w, Jv) = ω
(
−J2w, Jv

)
= ω

(
Jv, J2w

)
so if we define u = Jw this just says

ω (v, u) = ω (Jv, Ju) .

So this is equivalent to ω being invariant under the action of J . Then positive
definite means g (v, v) ≥ 0, with equality iff v = 0.
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Proposition 1. The set of ω-compatible almost complex structures on (M,ω) is
contractible.

Proof. It is enough to show that this is true on each fiber, i.e. we will show that
for (V, ω) a symplectic vector space, the set of linear maps J : V → V such that
J2 = −1, ω (Ju, Jv) = ω (u, v), and ω (u, Jv) ≥ 0 (with equality iff v = 0) is
contractible. Call this set J (V, ω).

This is sufficient because of the following. There is a fiber a bundle E →M such

that the fiber over p ∈ M is J
(
TpM, ω|TpM

)
. An ω-compatible J is then just a

section of this bundle. If all the fibers of this bundle are contractible, then the set
of sections is contractible.

To see that J (V, ω) is contractible, it is enough to show that the space J
(
R2n, ωstd

)
is contractible. Let J0 be multiplication by i on R2n = Cn. Then notice that

ωstd (u, v) = uTJ0v .

Now we can rewrite the set J
(
R2n, ωstd

)
as:{

J : R2n → R2n | J2 = −1, JTJ0J = J0, v
TJTJ0v ≥ 0,= 0 ⇐⇒ v = 0

}
.

Next time we will prove a lemma that reduces the question to one concern-
ing symmetric positive definite matrices. And then the space of such matrices is
contractible since we can somehow deform all eigenvalues to 1. �
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