LECTURE 11

MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

1. Group actions on Symplectic manifolds

1.1. S^{1}-actions. Recall we were dealing with the following situation. Consider a Hamiltonian S^{1} action on (M, ω) generated by X_{H} where $H: M \rightarrow \mathbb{R}$. If $c \in \mathbb{R}$ is a regular value of H on which S^{1} acts freely, then

$$
H^{-1}(c) / S^{1}=M / / S^{1}
$$

is the symplectic quotient.
Example 1. We did the example last time where $(M, \omega)=\left(\mathbb{C}^{n+1}, \omega_{\text {std }}\right)$ and $H=\pi|z|^{2}$. The corresponding symplectic quotient was $\mathbb{C P}^{n}$.

1.2. Torus actions. We write $\mathbb{T}^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Definition 1. A Hamiltonian \mathbb{T}^{k} action on (M, ω) is a \mathbb{T}^{k} action on (M, ω) together with a "moment map" $\mu: M \rightarrow \mathbb{R}^{k}=\left(\mathrm{t}^{k}\right)^{*}$ such that:
(1) if $v \in \mathbb{R}^{k}=\mathfrak{t}^{k}$, then the derivative of the \mathbb{T}^{k} action in the direction of v is the Hamiltonian vector field of $H_{v}=\langle\mu(\cdot), V\rangle$, and
(2) μ is invariant under the \mathbb{T}^{k} action.

Remark 1. There is a more general version of this where instead of \mathbb{T}^{k} we have a Lie group G. The first condition is the same, and the second condition says that it is G-equivariant where G acts by the adjoint action.

If $c \in \mathbb{R}^{k}$ is a regular value of μ such that \mathbb{T}^{k} acts freely on $\mu^{-1}(c)$, then

$$
\mu^{-1}(c) / \mathbb{T}^{k}=M / / \mathbb{T}^{k}
$$

is naturally a symplectic manifold. Note that

$$
\operatorname{dim}\left(M / / \mathbb{T}^{k}\right)=\operatorname{dim}(M)-2 k
$$

1.3. Toric symplectic manifolds. We get an interesting class of symplectic manifolds by considering the tori which give rise to a 0 -dimensional symplectic quotient.
Definition 2. A (compact) toric symplectic manifold is a (compact) symplectic manifold $\left(M^{2 n}, \omega\right)$ together with an effective Hamiltonian \mathbb{T}^{n} action with moment map $\mu: M \rightarrow \mathbb{R}^{n}$.

These aren't so interesting from the point of view of symplectic quotients since they just give a point, but they are interesting examples of symplectic manifolds that come up a lot.

[^0]Theorem 1 (Atiyah-Guillemin-Sternberg, Delzant). • For a compact connected toric symplectic manifold, $\mu(M) \subset \mathbb{R}^{k}$ is a convex polytope. For each vertex, there are n adjacent edges, whose vectors, after rescaling, are in \mathbb{Z}^{n} and give a \mathbb{Z}-basis for \mathbb{Z}^{n}.

- The map $M \mapsto \mu(M)$ gives a bijection between compact, connected, toric symplectic manifolds modulo isomorphism, and convex polytopes as above.

Example 2. Let $M=\mathbb{C P}^{n}$ and $\mu: \mathbb{C P}^{n} \rightarrow \mathbb{R}^{n}$ be defined by

$$
\mu\left(z_{0}: \cdots: z_{n}\right)=\frac{\pi\left(\left|z_{1}\right|^{2}, \cdots,\left|z_{n}\right|^{2}\right)}{\left|z_{0}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}
$$

The action of $\left(\theta_{1}, \cdots, \theta_{n}\right) \in \mathbb{T}^{n}$ is given by

$$
\left[z_{0}: \cdots: z_{n}\right] \mapsto\left[z_{0}: e^{2 \pi i \theta_{1}} z_{1}: \cdots: e^{2 \pi i \theta_{n}} z_{n}\right]
$$

The image of μ is

$$
\mu\left(\mathbb{C P}^{n}\right)=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, \sum x_{i}=\pi\right\}
$$

For $n=2$, this is just a right triangle with vertices at $(0,0),(\pi, 0)$, and $(0, \pi)$. The inverse image of the origin is the point $[1: 0: 0]$. The inverse image of $(0, \pi)$ is $[0: 0: 1]$, and the inverse image of $(\pi, 0)$ is $[0: 1: 0]$. The inverse image of the point $(\pi / 2,1)$ is the circle of all points of the form $\left[1: e^{i \theta}: 0\right]$. The inverse image of the whole bottom edge is the $\mathbb{C P}^{1}$ given by points of the form $\left[z_{0}: z_{1}: 0\right]$, the inverse image of the left edge is a $\mathbb{C P}^{1}$ given by points of the form $\left[z_{0}: 0: z_{2}\right]$, and the third edge is a $\mathbb{C P}^{1}$ given by points of the form $\left[0: z_{1}: z_{2}\right]$. The inverse image of an interior point is a 2 -torus consisting of points which look like $\left[1: e^{i \theta_{1}} r_{1}: e^{i \theta_{2}} r_{2}\right.$] for fixed r_{1} and r_{2}.

Fact 1. These are Lagrangian tori.
Now consider an inscribed similar triangle with right vertex at the origin. If we draw a similar triangle also with right angle at the origin, then the long edge Then the long edge (without endpoints) of this smaller triangle has inverse image a torus cross an interval. If we include the endpoints we get S^{3}. The inverse image of this entire triangle is B^{4}.

Another interesting thing to do is to remove this small triangle. This is still a perfectly legitimate polytope, so by the above theorem, this corresponds to some toric symplectic manifold. ${ }^{1}$ In particular this corresponds to $\mathbb{C P}^{2}$ blown up at a point. This shorter diagonal edge is the exceptional divisor. The top diagonal edge is the line at ∞ in $\mathbb{C P}^{2}$, so if we delete this edge, this has inverse image \mathbb{C}^{2} blown up at a point. This consists of the pairs (L, z) where L is a complex line through the origin in \mathbb{C}^{2}, and $z \in L$. For nonzero z this determines L uniquely, but if z is 0 , L could be anything. So there is a projection from this to \mathbb{C}^{2} which is a bijection away from the origin. But at the origin, the inverse image is $\mathbb{C P}^{1}$.

Remark 2 (Blow-ups in 4-dimensions). In algebraic geometry, a point is removed and replaced by $\mathbb{C P}^{1}$, which is called the exceptional divisor. In symplectic geometry, a 4-ball is removed and the boundary S^{3} is collapsed by identifying fibers of the

[^1]Hopf fibration to the S^{2}. If you're a 4-manifold topologist, then this is a connect sum with $\overline{\mathbb{C P}^{2}}$.

We can continue to chop off corners as long as we have an integer basis, e.g. if we chop 4 corners off to get the following:

then this thing corresponds to $\mathbb{C P}^{2}$ blown up at 4-points. Each time we do it, we pay the price of losing a bit of symplectic volume. In the 4-dimensional case this is the same as the area of the polytope.

The rectangle in the plane corresponds to $S^{2} \times S^{2}$ since the cartesian product of a polytope corresponds to the cartesian product of the symplectic manifolds.
Fact 2 (fun). In $\mathbb{C P}^{n}$, the Lagrangian n-torus given by the preimage of the center of $\mu\left(\mathbb{C P}^{n}\right)$:

$$
\mu^{-1}\left(\pi\left(\frac{1}{n}, \cdots, \frac{1}{n}\right)\right)
$$

is not displaceable. This can be proved using Lagrangian Floer homology.
It is also true that all other fibers $\mu^{-1}(x)$ (where x is in the interior of the moment map image) are displaceable (this is at least know for $n \leq 3$).

2. Almost complex structures

Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold. An almost complex structure on M is a bundle map $J: T M \rightarrow T M$ such that $J^{2}=-1$. This makes $T X$ into a complex vector bundle. We want to insist that these have some sort of compatibility with our symplectic form.
Definition 3. J is ω-compatible if the bundle map

$$
\begin{aligned}
& T M \otimes T M \xrightarrow{g} \mathbb{R} \\
& \quad(v, w) \longmapsto \omega(v, J w)
\end{aligned}
$$

is a positive definite inner product on TM. I.e. g is a Riemannian metric on M.
First of all this means that g is symmetric, i.e. $g(v, w)=g(w, v)$. But this is equivalent to:

$$
\omega(v, J w)=\omega(w, J v)=\omega\left(-J^{2} w, J v\right)=\omega\left(J v, J^{2} w\right)
$$

so if we define $u=J w$ this just says

$$
\omega(v, u)=\omega(J v, J u)
$$

So this is equivalent to ω being invariant under the action of J. Then positive definite means $g(v, v) \geq 0$, with equality iff $v=0$.

Proposition 1. The set of ω-compatible almost complex structures on (M, ω) is contractible.

Proof. It is enough to show that this is true on each fiber, i.e. we will show that for (V, ω) a symplectic vector space, the set of linear maps $J: V \rightarrow V$ such that $J^{2}=-1, \omega(J u, J v)=\omega(u, v)$, and $\omega(u, J v) \geq 0$ (with equality iff $v=0$) is contractible. Call this set $\mathcal{J}(V, \omega)$.

This is sufficient because of the following. There is a fiber a bundle $E \rightarrow M$ such that the fiber over $p \in M$ is $\mathcal{J}\left(T_{p} M,\left.\omega\right|_{T_{p} M}\right)$. An ω-compatible J is then just a section of this bundle. If all the fibers of this bundle are contractible, then the set of sections is contractible.

To see that $\mathcal{J}(V, \omega)$ is contractible, it is enough to show that the space $\mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{\text {std }}\right)$ is contractible. Let J_{0} be multiplication by i on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. Then notice that

$$
\omega_{\text {std }}(u, v)=u^{T} J_{0} v
$$

Now we can rewrite the set $\mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{\text {std }}\right)$ as:

$$
\left\{J: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n} \mid J^{2}=-1, J^{T} J_{0} J=J_{0}, v^{T} J^{T} J_{0} v \geq 0,=0 \Longleftrightarrow v=0\right\}
$$

Next time we will prove a lemma that reduces the question to one concerning symmetric positive definite matrices. And then the space of such matrices is contractible since we can somehow deform all eigenvalues to 1 .

[^0]: Date: February 26, 2019.

[^1]: ${ }^{1}$ As it turns out, the generic way to turn a polytope into a symplectic manifold is by taking the polytope cross a torus, and then collapse the corners to points, and collapse the edges to circles.

