LECTURE 11 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. Group actions on Symplectic manifolds

1.1. S^1 -actions. Recall we were dealing with the following situation. Consider a Hamiltonian S^1 action on (M, ω) generated by X_H where $H : M \to \mathbb{R}$. If $c \in \mathbb{R}$ is a regular value of H on which S^1 acts freely, then

$$H^{-1}(c)/S^1 = M/\!\!/S^1$$

is the symplectic quotient.

Example 1. We did the example last time where $(M, \omega) = (\mathbb{C}^{n+1}, \omega_{\text{std}})$ and $H = \pi |z|^2$. The corresponding symplectic quotient was \mathbb{CP}^n .

1.2. Torus actions. We write $\mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k$.

Definition 1. A Hamiltonian \mathbb{T}^k action on (M, ω) is a \mathbb{T}^k action on (M, ω) together with a "moment map" $\mu : M \to \mathbb{R}^k = (\mathfrak{t}^k)^*$ such that:

- (1) if $v \in \mathbb{R}^k = \mathfrak{t}^k$, then the derivative of the \mathbb{T}^k action in the direction of v is the Hamiltonian vector field of $H_v = \langle \mu(\cdot), V \rangle$, and
- (2) μ is invariant under the \mathbb{T}^k action.

Remark 1. There is a more general version of this where instead of \mathbb{T}^k we have a Lie group G. The first condition is the same, and the second condition says that it is G-equivariant where G acts by the adjoint action.

If $c \in \mathbb{R}^k$ is a regular value of μ such that \mathbb{T}^k acts freely on $\mu^{-1}(c)$, then

$$\mu^{-1}\left(c\right)/\mathbb{T}^{k} = M/\!\!/\mathbb{T}^{k}$$

is naturally a symplectic manifold. Note that

$$\dim\left(M/\!\!/\mathbb{T}^k\right) = \dim\left(M\right) - 2k \; .$$

1.3. Toric symplectic manifolds. We get an interesting class of symplectic manifolds by considering the tori which give rise to a 0-dimensional symplectic quotient.

Definition 2. A (compact) toric symplectic manifold is a (compact) symplectic manifold (M^{2n}, ω) together with an effective Hamiltonian \mathbb{T}^n action with moment map $\mu: M \to \mathbb{R}^n$.

These aren't so interesting from the point of view of symplectic quotients since they just give a point, but they are interesting examples of symplectic manifolds that come up a lot.

Date: February 26, 2019.

Theorem 1 (Atiyah-Guillemin-Sternberg, Delzant). • For a compact connected toric symplectic manifold, $\mu(M) \subset \mathbb{R}^k$ is a convex polytope. For each vertex, there are n adjacent edges, whose vectors, after rescaling, are in \mathbb{Z}^n and give a \mathbb{Z} -basis for \mathbb{Z}^n .

 The map M → μ(M) gives a bijection between compact, connected, toric symplectic manifolds modulo isomorphism, and convex polytopes as above.

Example 2. Let $M = \mathbb{CP}^n$ and $\mu : \mathbb{CP}^n \to \mathbb{R}^n$ be defined by

$$\mu(z_0:\dots:z_n) = \frac{\pi\left(|z_1|^2,\dots,|z_n|^2\right)}{|z_0|^2+\dots+|z_n|^2} .$$

The action of $(\theta_1, \cdots, \theta_n) \in \mathbb{T}^n$ is given by

$$[z_0:\cdots:z_n]\mapsto \left[z_0:e^{2\pi i\theta_1}z_1:\cdots:e^{2\pi i\theta_n}z_n\right] \ .$$

The image of μ is

$$\mu\left(\mathbb{CP}^n\right) = \left\{x \in \mathbb{R}^n \,|\, x_i \ge 0, \sum x_i = \pi\right\} \;.$$

For n = 2, this is just a right triangle with vertices at (0,0), $(\pi,0)$, and $(0,\pi)$. The inverse image of the origin is the point [1:0:0]. The inverse image of $(0,\pi)$ is [0:0:1], and the inverse image of $(\pi,0)$ is [0:1:0]. The inverse image of the point $(\pi/2,1)$ is the circle of all points of the form $[1:e^{i\theta}:0]$. The inverse image of the whole bottom edge is the \mathbb{CP}^1 given by points of the form $[z_0:z_1:0]$, the inverse image of the left edge is a \mathbb{CP}^1 given by points of the form $[z_0:0:z_2]$, and the third edge is a \mathbb{CP}^1 given by points of the form $[0:z_1:z_2]$. The inverse image of an interior point is a 2-torus consisting of points which look like $[1:e^{i\theta_1}r_1:e^{i\theta_2}r_2]$ for fixed r_1 and r_2 .

Fact 1. These are Lagrangian tori.

Now consider an inscribed similar triangle with right vertex at the origin. If we draw a similar triangle also with right angle at the origin, then the long edge Then the long edge (without endpoints) of this smaller triangle has inverse image a torus cross an interval. If we include the endpoints we get S^3 . The inverse image of this entire triangle is B^4 .

Another interesting thing to do is to remove this small triangle. This is still a perfectly legitimate polytope, so by the above theorem, this corresponds to some toric symplectic manifold.¹ In particular this corresponds to \mathbb{CP}^2 blown up at a point. This shorter diagonal edge is the exceptional divisor. The top diagonal edge is the line at ∞ in \mathbb{CP}^2 , so if we delete this edge, this has inverse image \mathbb{C}^2 blown up at a point. This consists of the pairs (L, z) where L is a complex line through the origin in \mathbb{C}^2 , and $z \in L$. For nonzero z this determines L uniquely, but if z is 0, L could be anything. So there is a projection from this to \mathbb{C}^2 which is a bijection away from the origin. But at the origin, the inverse image is \mathbb{CP}^1 .

Remark 2 (Blow-ups in 4-dimensions). In algebraic geometry, a point is removed and replaced by \mathbb{CP}^1 , which is called the exceptional divisor. In symplectic geometry, a 4-ball is removed and the boundary S^3 is collapsed by identifying fibers of the

 $^{^{1}}$ As it turns out, the generic way to turn a polytope into a symplectic manifold is by taking the polytope cross a torus, and then collapse the corners to points, and collapse the edges to circles.

Hopf fibration to the S^2 . If you're a 4-manifold topologist, then this is a connect sum with $\overline{\mathbb{CP}^2}$.

We can continue to chop off corners as long as we have an integer basis, e.g. if we chop 4 corners off to get the following:

then this thing corresponds to \mathbb{CP}^2 blown up at 4-points. Each time we do it, we pay the price of losing a bit of symplectic volume. In the 4-dimensional case this is the same as the area of the polytope.

The rectangle in the plane corresponds to $S^2 \times S^2$ since the cartesian product of a polytope corresponds to the cartesian product of the symplectic manifolds.

Fact 2 (fun). In \mathbb{CP}^n , the Lagrangian n-torus given by the preimage of the center of $\mu(\mathbb{CP}^n)$:

$$\mu^{-1}\left(\pi\left(\frac{1}{n},\cdots,\frac{1}{n}\right)\right)$$

is not displaceable. This can be proved using Lagrangian Floer homology.

It is also true that all other fibers $\mu^{-1}(x)$ (where x is in the interior of the moment map image) are displaceable (this is at least know for $n \leq 3$).

2. Almost complex structures

Let (M^{2n}, ω) be a symplectic manifold. An almost complex structure on M is a bundle map $J: TM \to TM$ such that $J^2 = -1$. This makes TX into a complex vector bundle. We want to insist that these have some sort of compatibility with our symplectic form.

Definition 3. J is ω -compatible if the bundle map

$$TM \otimes TM \xrightarrow{g} \mathbb{R}$$

$$(v,w) \longmapsto \omega(v,Jw)$$

is a positive definite inner product on TM. I.e. g is a Riemannian metric on M.

First of all this means that g is symmetric, i.e. g(v, w) = g(w, v). But this is equivalent to:

$$\omega(v, Jw) = \omega(w, Jv) = \omega(-J^2w, Jv) = \omega(Jv, J^2w)$$

so if we define u = Jw this just says

$$\omega\left(v,u\right) = \omega\left(Jv,Ju\right)$$

So this is equivalent to ω being invariant under the action of J. Then positive definite means $g(v, v) \ge 0$, with equality iff v = 0.

Proposition 1. The set of ω -compatible almost complex structures on (M, ω) is contractible.

Proof. It is enough to show that this is true on each fiber, i.e. we will show that for (V, ω) a symplectic vector space, the set of linear maps $J: V \to V$ such that $J^2 = -1$, $\omega(Ju, Jv) = \omega(u, v)$, and $\omega(u, Jv) \ge 0$ (with equality iff v = 0) is contractible. Call this set $\mathcal{J}(V, \omega)$.

This is sufficient because of the following. There is a fiber a bundle $E \to M$ such that the fiber over $p \in M$ is $\mathcal{J}\left(T_pM, \omega|_{T_pM}\right)$. An ω -compatible J is then just a section of this bundle. If all the fibers of this bundle are contractible, then the set of sections is contractible.

To see that $\mathcal{J}(V,\omega)$ is contractible, it is enough to show that the space $\mathcal{J}(\mathbb{R}^{2n},\omega_{\text{std}})$ is contractible. Let J_0 be multiplication by i on $\mathbb{R}^{2n} = \mathbb{C}^n$. Then notice that

$$\omega_{\rm std}\left(u,v\right) = u^T J_0 v \; .$$

Now we can rewrite the set $\mathcal{J}(\mathbb{R}^{2n}, \omega_{\text{std}})$ as:

$$\left\{J: \mathbb{R}^{2n} \to \mathbb{R}^{2n} \,|\, J^2 = -1, J^T J_0 J = J_0, v^T J^T J_0 v \ge 0, = 0 \iff v = 0\right\} \;.$$

Next time we will prove a lemma that reduces the question to one concerning symmetric positive definite matrices. And then the space of such matrices is contractible since we can somehow deform all eigenvalues to 1. \Box