LECTURE 12
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS
NOTES: JACKSON VAN DYKE

1. Almost complex structures

1.1. ω-compatible acs. Recall we defined an almost-complex structure to be a bundle map $J: T M \rightarrow T M$ with $J^{2}=-1$. Then J is ω-compatible if $g(u, v):=$ $\omega(u, J v)$ is a Riemannian metric. We were in the middle of the proof of the following:

Proposition 1. The space of ω-compatible almost complex structures J is contractible.

Continued proof. Recall it is sufficient to show that the set
$\mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right)=\left\{J: \mathbb{R}^{2 n} \emptyset \mid J^{2}=-1,(u, v) \mapsto \omega(u, J v)\right.$ is pos. def. inner prod. $\}$
is contractible. We have the following lemma:
Lemma 1. A linear map $J \in \mathcal{J}\left(\mathbb{R}^{2 n}, \omega\right)$ iff $-J_{0} J$ is symmetric, symplectic, and positive definite.

Proof. (\Longrightarrow) : By definition, $J \in \mathcal{J}\left(\mathbb{R}^{2 n}, \omega\right)$ iff $J^{2}=-1, \omega(u, J v)=\omega(v, J u)$, and $\omega(v, J v) \geq 0$ (with equality iff $v=0$). The second condition is equivalent to $u^{T} J_{0} J v=-u^{T} J^{T} J_{0} v$ which is equivalent to

$$
\begin{equation*}
J_{0} J=-J^{T} J_{0} \tag{1}
\end{equation*}
$$

So given these conditions we want to show that $-J_{0} J$ is symmetric, symplectic, and positive definite. To see that it is symmetric, we can just check that

$$
\left(-J_{0} J\right)^{T}=-J^{T} J_{0}^{T}=J^{T} J_{0}=-J_{0} J
$$

where we have used (1) in the last step. Recall that a matrix A is symplectic when $A^{T} J_{0} A=J_{0}$. So for $A=-J_{0} J$ we can write

$$
\left(-J_{0} J\right)^{T} J_{0}\left(-J_{0} J\right)=J^{T} J_{0}^{T} J_{0} J_{0} J=-J^{T} J_{0}^{T} J=J^{T} J_{0} J={ }^{1}-J_{0} J J=J_{0}
$$

Positive definite is easy to check.
(\Longleftarrow) : This direction is effectively the same.
Now the result follows because the space of symmetric, symplectic, and positive definite matrices is contractible.

[^0]1.2. ω-tame acs.

Definition 1. An acs J is ω-tame if $\omega(v, J v) \geq 0$ with equality iff $v=0$.
Remark 1. J is ω-compatible iff J is ω-tame and J is symplectic, i.e. $\omega(J u, J v)=$ $\omega(u, v)$.
Fact 1. The space of ω-tame J is also contractible.

1.3. First results about acs.

Remark 2. Since the space of ω-compatible J is contractible, $T M$ has a distinguished structure of a complex vector bundle which is unique up to homotopy.

In particular, this implies that there are well-defined Chern classes $c_{k}(T M) \in$ $H^{2}(M, \mathbb{Z})$ for $k=0, \cdots, n$. Note that these $c_{k}(T M)$ are invariant under deformation of ω.

Remark 3 (Chern class review). If $L \rightarrow B$ is a complex line bundle over a CWcomplex B, we can define the first Chern class, $c_{1}(L) \in H^{2}(B)$ to be the Euler class of the associated circle bundle.

If E is a rank k complex vector bundle, we can define

$$
c_{1}(E)=c_{1}(\operatorname{det} E)=c_{1}\left(\wedge^{k} E\right)
$$

to be the first Chern class of the determinant line bundle.
If J_{0} and J_{1} are ω-compatible acs on (M, ω), this implies that there exists an isomorphism of complex vector bundles:

1.4. Difference between acs and complex structures. Let M be a $2 n$-dimensional real smooth manifold. An almost complex structure is a bundle map $J: T M \rightarrow T M$ such that $J^{2}=-1$. Now a complex manifold structure is a maximal atlas of coordinate charts:

$$
\varphi: U \xrightarrow{\simeq} V
$$

(which are diffeomorphisms for U some open subset of M, and V some open subset of \mathbb{C}^{n}) such that the transition maps between open subsets of \mathbb{C}^{n} are holomorphic. This makes M into an n-dimensional complex manifold.

A complex structure gives rise to an acs J given by multiplication by i. The converse is not true.

Definition 2. An almost complex structure $J: T M \emptyset$ is integrable if it comes from a complex manifold structure as above.

Not every acs is integrable, but there is a theorem saying when they are. First consider the following. If J is an acs, it gives a decomposition

$$
\wedge^{k} M \otimes \mathbb{C}=\bigoplus_{i+j=k} T^{i, j} M
$$

where the pieces look something like

$$
d z_{p_{1}} \wedge \cdots \wedge d z_{p_{i}} \wedge d \bar{z}_{q_{1}} \wedge \cdots \wedge d \bar{z}_{q_{j}}
$$

Now we define the Nijenhuis tensor

$$
N: T^{1,0} \rightarrow T^{0,2}
$$

If α is a $(1,0)$-form (i.e. a section of $T^{1,0}$), define $N \alpha$ to be the projection to $T^{0,2}$ of $d \alpha$. Now we have to check this is a tensor:

$$
N(f \alpha)=(d(f \alpha))^{0,2}=(d f \wedge \alpha)^{\theta, 2}+(f \wedge d \alpha)^{0,2}=f N \alpha
$$

where $d f=\partial f+\bar{\partial} f$. Now notice if J is integrable this is certainly 0 , but in fact we have the following:

Theorem 1 (Newlander-Nirenberg). J is integrable iff $N \equiv 0$.
Remark 4. If $\operatorname{dim}_{\mathbb{R}} M=2$, then $N=0$ automatically. So any acs is integrable in this case.

2. Holomorphic curves

These are also called pseudo-holomorphic curves, and J-holomorphic curves. Let (Σ, j) be Riemann surface (not necessarily compact). I.e. Σ is a one-dimensional complex manifold, and $j: T M \emptyset$ is multiplication by i.

Remark 5. By the above remark, a Riemann surface is equivalent to a pair (Σ, j) where Σ is a real 2 -manifold and $j: T \Sigma \emptyset$ is an acs.

Definition 3. Given (M, ω, J) where J is ω-compatible/tame, a J-holomorphic map $(\Sigma, j) \rightarrow(M, \omega, J)$ is a smooth map $u: \Sigma \rightarrow M$ such that $d u$ is complex linear, i.e.

$$
J \circ d u=d u \circ j
$$

2.1. Some basic features of these. Note that if J is ω-tame, it determines a Riemannian metric g on M defined by

$$
g(u, v)=\frac{1}{2}(\omega(u, J v)+\omega(v, J u))
$$

If J is ω-compatible, then

$$
g(u, v)=\omega(u, J v)
$$

Now we consider areas of holomorphic maps. Recall that if (M, g) is any Riemannian manifold, and $u: \Sigma \rightarrow M$ is any smooth map, we can define the area to be

$$
\operatorname{area}(u)=\int_{\Sigma} \sqrt{\operatorname{det} g\left(\frac{\partial u}{\partial x^{i}}, \frac{\partial u}{\partial x^{j}}\right)}\left|d x^{1} \cdots d x^{k}\right|
$$

Note that if Σ is a submanifold of M and u is the inclusion map, then this is the usual area.

Proposition 2. If $u:(\Sigma, j) \rightarrow(M, J)$ is holomorphic, and J is ω-tame then

$$
\operatorname{area}(u)=\int_{\Sigma} u^{*} \omega
$$

Proof. We will check that the integrands agree pointwise. Let $p \in \Sigma$ and $v \in$ $T_{p} \Sigma \backslash\{0\}$. Then $(v, j v)$ is a basis for $T_{p} \Sigma$. We need to check that

$$
\sqrt{\operatorname{det}\left(\begin{array}{cc}
g(d u(v), d u(v)) & g(d u(v), d u(j v)) \\
g(d u(v), d u(j v)) & g(d u(j v), d u(j v))
\end{array}\right)} .
$$

Let's rewrite this a bit neater by writing $w=d u(v)$. Then $J w=d u(j v)$. So we need to show that

$$
\sqrt{\operatorname{det}\left(\begin{array}{cc}
g(w, w) & g(w, J w) \\
g(w, J w) & g(J w, J w)
\end{array}\right)}=\omega(w, J w) .
$$

Now we can just calculate:

$$
\begin{aligned}
g(w, w) & =\omega(w, J w) \\
g(w, J w) & =\frac{1}{2}\left(\omega\left(w, J^{2} w\right)+\omega(J w, J w)\right)=0 \\
g(J w, J w) & =\omega\left(J w, J^{2} w\right)=\omega(J w,-w)=\omega(w, J w)
\end{aligned}
$$

which means

$$
\sqrt{\operatorname{det}\left(\begin{array}{cc}
g(w, w) & g(w, J w) \\
g(w, J w) & g(J w, J w)
\end{array}\right)}=\sqrt{\omega(w, J w)^{2}}
$$

which is positive because J is ω-tame so we are done.
Proposition 3. Suppose that J is ω-compatible, $u:(\Sigma, j) \rightarrow(M, \omega, J)$ is holomorphic, and Σ is compact so that

$$
u_{*}[\Sigma] \in H_{2}(M)
$$

is defined. Then u is area minimizing in its homology class. That is, if $v: \Sigma^{\prime} \rightarrow U$ is a smooth map with

$$
v_{*}\left[\Sigma^{\prime}\right]=u_{*}[\Sigma] \in H_{2}(M)
$$

then $\operatorname{area}(v) \geq \operatorname{area}(u)$.
Proof. We know that

$$
\operatorname{area}(u)=\int_{\Sigma} u^{*} \omega=\int_{\Sigma}\left\langle u_{*}[\Sigma], \omega\right\rangle
$$

so we need to show that

$$
\operatorname{area}(v) \geq \int_{\Sigma} v^{*} \omega
$$

We will prove this pointwise. Let $p \in \Sigma^{\prime}$, and let $\{X, Y\}$ be a basis for $T_{p} \Sigma^{\prime}$. We want to show that

$$
\sqrt{\operatorname{det}\left(\begin{array}{cc}
g\left(v_{*} X, v_{*} X\right) & g\left(v_{*} X, v_{*} Y\right) \\
g\left(v_{*} X, v_{*} Y\right) & g\left(v_{*} Y, v_{*} Y\right)
\end{array}\right)} \geq \omega\left(v_{*} X, v_{*} Y\right) .
$$

WLOG assume $v_{*} X \neq 0\left(\mathrm{o} / \mathrm{w}\right.$ we are done) and $g\left(v_{*} X, v_{*} X\right)=1$. Since J is ω-compatible, we can choose a basis

$$
\left\{e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{n}\right\}
$$

for $T_{V(p)} M$ such that $J e_{i}=f_{i}$, and

$$
\begin{aligned}
\omega\left(e_{i}, e_{j}\right)=\omega\left(f_{i}, f_{j}\right) & =0 \\
g\left(e_{i}, f_{j}\right) & =0
\end{aligned} \quad \begin{aligned}
\omega\left(e_{i}, f_{j}\right)=\delta_{i j} \\
g\left(e_{i}, e_{j}\right)=g\left(f_{i}, f_{j}\right)=\delta_{i j}
\end{aligned}
$$

The idea is to choose a basis to look like \mathbb{C}^{n}. Write

$$
v_{*} Y=\sum_{i=1}^{n}\left(a_{i} e_{i}+b_{i} f_{i}\right)
$$

Now we can directly calculate

$$
\begin{aligned}
g\left(v_{*} X, v_{*} X\right) & =1 \\
g\left(v_{*} X, v_{*} Y\right) & =a_{1} \\
g\left(v_{*} Y, v_{*} Y\right) & =\sum\left(a_{i}^{2}+b_{i}^{2}\right)
\end{aligned}
$$

so we have

$$
\sqrt{\operatorname{det}(\cdots)}=\sqrt{-a_{1}^{2}+\sum_{i=1}^{2}\left(a_{i}^{2}+b_{i}^{2}\right)}
$$

and

$$
\omega\left(v_{*} X, v_{*} Y\right)=b_{1}
$$

so we get the desired inequality. Note this implies the image of $d u_{p}$ is complex linear.

[^0]: Date: February 28, 2019.
 $1_{\text {by (1) }}$

