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1. Almost complex structures

1.1. ω-compatible acs. Recall we defined an almost-complex structure to be a
bundle map J : TM → TM with J2 = −1. Then J is ω-compatible if g (u, v) :=
ω (u, Jv) is a Riemannian metric. We were in the middle of the proof of the follow-
ing:

Proposition 1. The space of ω-compatible almost complex structures J is con-
tractible.

Continued proof. Recall it is sufficient to show that the set

J
(
R2n, ω0

)
=
{
J : R2n

	 | J2 = −1, (u, v) 7→ ω (u, Jv) is pos. def. inner prod.
}

is contractible. We have the following lemma:

Lemma 1. A linear map J ∈ J
(
R2n, ω

)
iff −J0J is symmetric, symplectic, and

positive definite.

Proof. ( =⇒ ): By definition, J ∈ J
(
R2n, ω

)
iff J2 = −1, ω (u, Jv) = ω (v, Ju),

and ω (v, Jv) ≥ 0 (with equality iff v = 0). The second condition is equivalent to
uTJ0Jv = −uTJTJ0v which is equivalent to

(1) J0J = −JTJ0 .

So given these conditions we want to show that −J0J is symmetric, symplectic,
and positive definite. To see that it is symmetric, we can just check that

(−J0J)
T

= −JTJT
0 = JTJ0 = −J0J

where we have used (1) in the last step. Recall that a matrix A is symplectic when
ATJ0A = J0. So for A = −J0J we can write

(−J0J)
T
J0 (−J0J) = JTJT

0 J0J0J = −JTJT
0 J = JTJ0J = 1− J0JJ = J0 .

Positive definite is easy to check.
(⇐=): This direction is effectively the same. �

Now the result follows because the space of symmetric, symplectic, and positive
definite matrices is contractible. �
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1.2. ω-tame acs.

Definition 1. An acs J is ω-tame if ω (v, Jv) ≥ 0 with equality iff v = 0.

Remark 1. J is ω-compatible iff J is ω-tame and J is symplectic, i.e. ω (Ju, Jv) =
ω (u, v).

Fact 1. The space of ω-tame J is also contractible.

1.3. First results about acs.

Remark 2. Since the space of ω-compatible J is contractible, TM has a distin-
guished structure of a complex vector bundle which is unique up to homotopy.

In particular, this implies that there are well-defined Chern classes ck (TM) ∈
H2 (M,Z) for k = 0, · · · , n. Note that these ck (TM) are invariant under deforma-
tion of ω.

Remark 3 (Chern class review). If L → B is a complex line bundle over a CW-
complex B, we can define the first Chern class, c1 (L) ∈ H2 (B) to be the Euler
class of the associated circle bundle.

If E is a rank k complex vector bundle, we can define

c1 (E) = c1 (detE) = c1
(
∧kE

)
to be the first Chern class of the determinant line bundle.

If J0 and J1 are ω-compatible acs on (M,ω), this implies that there exists an
isomorphism of complex vector bundles:

(TM, J0) (TM, J1)

M

'

.

1.4. Difference between acs and complex structures. LetM be a 2n-dimensional
real smooth manifold. An almost complex structure is a bundle map J : TM → TM
such that J2 = −1. Now a complex manifold structure is a maximal atlas of coor-
dinate charts:

ϕ : U
'−→ V

(which are diffeomorphisms for U some open subset of M , and V some open subset
of Cn) such that the transition maps between open subsets of Cn are holomorphic.
This makes M into an n-dimensional complex manifold.

A complex structure gives rise to an acs J given by multiplication by i. The
converse is not true.

Definition 2. An almost complex structure J : TM 	 is integrable if it comes
from a complex manifold structure as above.

Not every acs is integrable, but there is a theorem saying when they are. First
consider the following. If J is an acs, it gives a decomposition

∧k M ⊗ C =
⊕

i+j=k

T i,jM

where the pieces look something like

dzp1
∧ · · · ∧ dzpi

∧ dz̄q1 ∧ · · · ∧ dz̄qj .
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Now we define the Nijenhuis tensor

N : T 1,0 → T 0,2 .

If α is a (1, 0)-form (i.e. a section of T 1,0), define Nα to be the projection to T 0,2

of dα . Now we have to check this is a tensor:

N (fα) = (d (fα))
0,2

=������
( df ∧ α)

0,2
+ (f ∧ dα )

0,2
= fNα

where df = ∂f + ∂̄f . Now notice if J is integrable this is certainly 0, but in fact
we have the following:

Theorem 1 (Newlander-Nirenberg). J is integrable iff N ≡ 0.

Remark 4. If dimRM = 2, then N = 0 automatically. So any acs is integrable in
this case.

2. Holomorphic curves

These are also called pseudo-holomorphic curves, and J-holomorphic curves. Let
(Σ, j) be Riemann surface (not necessarily compact). I.e. Σ is a one-dimensional
complex manifold, and j : TM 	 is multiplication by i.

Remark 5. By the above remark, a Riemann surface is equivalent to a pair (Σ, j)
where Σ is a real 2-manifold and j : TΣ 	 is an acs.

Definition 3. Given (M,ω, J) where J is ω-compatible/tame, a J-holomorphic
map (Σ, j) → (M,ω, J) is a smooth map u : Σ → M such that du is complex
linear, i.e.

J ◦ du = du ◦ j .

2.1. Some basic features of these. Note that if J is ω-tame, it determines a
Riemannian metric g on M defined by

g (u, v) =
1

2
(ω (u, Jv) + ω (v, Ju)) .

If J is ω-compatible, then
g (u, v) = ω (u, Jv) .

Now we consider areas of holomorphic maps. Recall that if (M, g) is any Rie-
mannian manifold, and u : Σ → M is any smooth map, we can define the area to
be

area (u) =

∫
Σ

√
det g

(
∂u

∂xi
,
∂u

∂xj

) ∣∣ dx1 · · · dxk
∣∣ .

Note that if Σ is a submanifold of M and u is the inclusion map, then this is the
usual area.

Proposition 2. If u : (Σ, j)→ (M,J) is holomorphic, and J is ω-tame then

area (u) =

∫
Σ

u∗ω .

Proof. We will check that the integrands agree pointwise. Let p ∈ Σ and v ∈
TpΣ \ {0}. Then (v, jv) is a basis for TpΣ. We need to check that√

det

(
g ( du (v) , du (v)) g ( du (v) , du (jv))
g ( du (v) , du (jv)) g ( du (jv) , du (jv))

)
.
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Let’s rewrite this a bit neater by writing w = du (v). Then Jw = du (jv). So we
need to show that√

det

(
g (w,w) g (w, Jw)
g (w, Jw) g (Jw, Jw)

)
= ω (w, Jw) .

Now we can just calculate:

g (w,w) = ω (w, Jw)

g (w, Jw) =
1

2

(
ω
(
w, J2w

)
+ ω (Jw, Jw)

)
= 0

g (Jw, Jw) = ω
(
Jw, J2w

)
= ω (Jw,−w) = ω (w, Jw)

which means √
det

(
g (w,w) g (w, Jw)
g (w, Jw) g (Jw, Jw)

)
=

√
ω (w, Jw)

2

which is positive because J is ω-tame so we are done. �

Proposition 3. Suppose that J is ω-compatible, u : (Σ, j)→ (M,ω, J) is holomor-
phic, and Σ is compact so that

u∗ [Σ] ∈ H2 (M)

is defined. Then u is area minimizing in its homology class. That is, if v : Σ′ → U
is a smooth map with

v∗ [Σ′] = u∗ [Σ] ∈ H2 (M) ,

then area (v) ≥ area (u).

Proof. We know that

area (u) =

∫
Σ

u∗ω =

∫
Σ

〈u∗ [Σ] , ω〉

so we need to show that

area (v) ≥
∫

Σ

v∗ω .

We will prove this pointwise. Let p ∈ Σ′, and let {X,Y } be a basis for TpΣ′. We
want to show that√

det

(
g (v∗X, v∗X) g (v∗X, v∗Y )
g (v∗X, v∗Y ) g (v∗Y, v∗Y )

)
≥ ω (v∗X, v∗Y ) .

WLOG assume v∗X 6= 0 (o/w we are done) and g (v∗X, v∗X) = 1. Since J is
ω-compatible, we can choose a basis

{e1, · · · , en, f1, · · · , fn}

for TV (p)M such that Jei = fi, and

ω (ei, ej) = ω (fi, fj) = 0 ω (ei, fj) = δij

g (ei, fj) = 0 g (ei, ej) = g (fi, fj) = δij .

The idea is to choose a basis to look like Cn. Write

v∗Y =

n∑
i=1

(aiei + bifi) .



LECTURE 12 MATH 242 5

Now we can directly calculate

g (v∗X, v∗X) = 1

g (v∗X, v∗Y ) = a1

g (v∗Y, v∗Y ) =
∑(

a2
i + b2i

)
so we have √

det (· · · ) =

√√√√−a2
1 +

2∑
i=1

(a2
i + b2i )

and
ω (v∗X, v∗Y ) = b1

so we get the desired inequality. Note this implies the image of dup is complex
linear. �
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