LECTURE 12 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. Almost complex structures

1.1. ω -compatible acs. Recall we defined an almost-complex structure to be a bundle map $J: TM \to TM$ with $J^2 = -1$. Then J is ω -compatible if $g(u, v) := \omega(u, Jv)$ is a Riemannian metric. We were in the middle of the proof of the following:

Proposition 1. The space of ω -compatible almost complex structures J is contractible.

Continued proof. Recall it is sufficient to show that the set

$$\mathcal{J}\left(\mathbb{R}^{2n},\omega_{0}\right) = \left\{J:\mathbb{R}^{2n} \odot \mid J^{2} = -1, (u,v) \mapsto \omega\left(u,Jv\right) \text{ is pos. def. inner prod.}\right\}$$

is contractible. We have the following lemma:

Lemma 1. A linear map $J \in \mathcal{J}(\mathbb{R}^{2n}, \omega)$ iff $-J_0J$ is symmetric, symplectic, and positive definite.

Proof. (\implies): By definition, $J \in \mathcal{J}(\mathbb{R}^{2n}, \omega)$ iff $J^2 = -1$, $\omega(u, Jv) = \omega(v, Ju)$, and $\omega(v, Jv) \geq 0$ (with equality iff v = 0). The second condition is equivalent to $u^T J_0 Jv = -u^T J^T J_0 v$ which is equivalent to

$$J_0 J = -J^T J_0 \,.$$

So given these conditions we want to show that $-J_0J$ is symmetric, symplectic, and positive definite. To see that it is symmetric, we can just check that

$$(-J_0 J)^T = -J^T J_0^T = J^T J_0 = -J_0 J$$

where we have used (1) in the last step. Recall that a matrix A is symplectic when $A^T J_0 A = J_0$. So for $A = -J_0 J$ we can write

$$(-J_0J)^T J_0 (-J_0J) = J^T J_0^T J_0 J_0 J = -J^T J_0^T J = J^T J_0 J = 1 - J_0 J J = J_0 .$$

Positive definite is easy to check.

 (\Leftarrow) : This direction is effectively the same.

Now the result follows because the space of symmetric, symplectic, and positive definite matrices is contractible.

Date: February 28, 2019.

 1 by (1)

1.2. ω -tame acs.

Definition 1. An acs J is ω -tame if $\omega(v, Jv) \ge 0$ with equality iff v = 0.

Remark 1. J is ω -compatible iff J is ω -tame and J is symplectic, i.e. $\omega(Ju, Jv) = \omega(u, v)$.

Fact 1. The space of ω -tame J is also contractible.

1.3. First results about acs.

Remark 2. Since the space of ω -compatible J is contractible, TM has a distinguished structure of a complex vector bundle which is unique up to homotopy.

In particular, this implies that there are well-defined Chern classes $c_k(TM) \in H^2(M,\mathbb{Z})$ for $k = 0, \dots, n$. Note that these $c_k(TM)$ are invariant under deformation of ω .

Remark 3 (Chern class review). If $L \to B$ is a complex line bundle over a CW-complex B, we can define the first Chern class, $c_1(L) \in H^2(B)$ to be the Euler class of the associated circle bundle.

If E is a rank k complex vector bundle, we can define

$$c_1\left(E\right) = c_1\left(\det E\right) = c_1\left(\wedge^k E\right)$$

to be the first Chern class of the determinant line bundle.

If J_0 and J_1 are ω -compatible acs on (M, ω) , this implies that there exists an isomorphism of complex vector bundles:

1.4. Difference between acs and complex structures. Let M be a 2n-dimensional real smooth manifold. An almost complex structure is a bundle map $J: TM \to TM$ such that $J^2 = -1$. Now a *complex manifold structure* is a maximal atlas of coordinate charts:

$$\varphi: U \xrightarrow{\simeq} V$$

(which are diffeomorphisms for U some open subset of M, and V some open subset of \mathbb{C}^n) such that the transition maps between open subsets of \mathbb{C}^n are holomorphic. This makes M into an *n*-dimensional complex manifold.

A complex structure gives rise to an acs J given by multiplication by i. The converse is not true.

Definition 2. An almost complex structure $J : TM \odot$ is integrable if it comes from a complex manifold structure as above.

Not every acs is integrable, but there is a theorem saying when they are. First consider the following. If J is an acs, it gives a decomposition

$$\wedge^k M \otimes \mathbb{C} = \bigoplus_{i+j=k} T^{i,j} M$$

where the pieces look something like

$$dz_{p_1} \wedge \cdots \wedge dz_{p_i} \wedge d\bar{z}_{q_1} \wedge \cdots \wedge d\bar{z}_{q_j}$$
.

Now we define the Nijenhuis tensor

$$N: T^{1,0} \to T^{0,2}$$
.

If α is a (1,0)-form (i.e. a section of $T^{1,0}$), define $N\alpha$ to be the projection to $T^{0,2}$ of $d\alpha$. Now we have to check this is a tensor:

$$N(f\alpha) = (d(f\alpha))^{0,2} = (df \wedge \alpha)^{0,2} + (f \wedge d\alpha)^{0,2} = fN\alpha$$

where $df = \partial f + \bar{\partial} f$. Now notice if J is integrable this is certainly 0, but in fact we have the following:

Theorem 1 (Newlander-Nirenberg). J is integrable iff $N \equiv 0$.

Remark 4. If $\dim_{\mathbb{R}} M = 2$, then N = 0 automatically. So any acs is integrable in this case.

2. Holomorphic curves

These are also called pseudo-holomorphic curves, and J-holomorphic curves. Let (Σ, j) be Riemann surface (not necessarily compact). I.e. Σ is a one-dimensional complex manifold, and $j: TM \odot$ is multiplication by i.

Remark 5. By the above remark, a Riemann surface is equivalent to a pair (Σ, j) where Σ is a real 2-manifold and $j: T\Sigma \bigcirc$ is an acs.

Definition 3. Given (M, ω, J) where J is ω -compatible/tame, a J-holomorphic map $(\Sigma, j) \to (M, \omega, J)$ is a smooth map $u : \Sigma \to M$ such that du is complex linear, i.e.

$$J \circ du = du \circ j$$
.

2.1. Some basic features of these. Note that if J is ω -tame, it determines a Riemannian metric g on M defined by

$$g(u, v) = \frac{1}{2} \left(\omega \left(u, Jv \right) + \omega \left(v, Ju \right) \right)$$

If J is ω -compatible, then

$$g(u,v) = \omega(u,Jv)$$
.

Now we consider areas of holomorphic maps. Recall that if (M, g) is any Riemannian manifold, and $u: \Sigma \to M$ is any smooth map, we can define the area to be

area
$$(u) = \int_{\Sigma} \sqrt{\det g\left(\frac{\partial u}{\partial x^{i}}, \frac{\partial u}{\partial x^{j}}\right)} \left| dx^{1} \cdots dx^{k} \right|$$

Note that if Σ is a submanifold of M and u is the inclusion map, then this is the usual area.

Proposition 2. If $u: (\Sigma, j) \to (M, J)$ is holomorphic, and J is ω -tame then

area
$$(u) = \int_{\Sigma} u^* \omega$$
.

Proof. We will check that the integrands agree pointwise. Let $p \in \Sigma$ and $v \in T_p \Sigma \setminus \{0\}$. Then (v, jv) is a basis for $T_p \Sigma$. We need to check that

$$\sqrt{\det \begin{pmatrix} g\left(du\left(v\right), du\left(v\right)\right) & g\left(du\left(v\right), du\left(jv\right)\right) \\ g\left(du\left(v\right), du\left(jv\right)\right) & g\left(du\left(jv\right), du\left(jv\right)\right) \end{pmatrix}} \cdot$$

Let's rewrite this a bit neater by writing w = du (v). Then Jw = du (jv). So we need to show that

$$\sqrt{\det \begin{pmatrix} g(w,w) & g(w,Jw) \\ g(w,Jw) & g(Jw,Jw) \end{pmatrix}} = \omega(w,Jw) .$$

Now we can just calculate:

$$g(w, w) = \omega(w, Jw)$$
$$g(w, Jw) = \frac{1}{2} \left(\omega(w, J^2w) + \omega(Jw, Jw) \right) = 0$$
$$g(Jw, Jw) = \omega(Jw, J^2w) = \omega(Jw, -w) = \omega(w, Jw)$$

which means

$$\sqrt{\det \begin{pmatrix} g(w,w) & g(w,Jw) \\ g(w,Jw) & g(Jw,Jw) \end{pmatrix}} = \sqrt{\omega (w,Jw)^2}$$

which is positive because J is ω -tame so we are done.

Proposition 3. Suppose that J is ω -compatible, $u : (\Sigma, j) \to (M, \omega, J)$ is holomorphic, and Σ is compact so that

$$u_*\left[\Sigma\right] \in H_2\left(M\right)$$

is defined. Then u is area minimizing in its homology class. That is, if $v:\Sigma'\to U$ is a smooth map with

$$v_*\left[\Sigma'\right] = u_*\left[\Sigma\right] \in H_2\left(M\right) \ ,$$

then area $(v) \ge area (u)$.

Proof. We know that

area
$$(u) = \int_{\Sigma} u^* \omega = \int_{\Sigma} \langle u_* [\Sigma], \omega \rangle$$

so we need to show that

$$\operatorname{area}(v) \ge \int_{\Sigma} v^* \omega$$
.

We will prove this pointwise. Let $p \in \Sigma'$, and let $\{X, Y\}$ be a basis for $T_p \Sigma'$. We want to show that

$$\sqrt{\det \begin{pmatrix} g\left(v_{*}X, v_{*}X\right) & g\left(v_{*}X, v_{*}Y\right) \\ g\left(v_{*}X, v_{*}Y\right) & g\left(v_{*}Y, v_{*}Y\right) \end{pmatrix}} \ge \omega\left(v_{*}X, v_{*}Y\right)$$

WLOG assume $v_*X \neq 0$ (o/w we are done) and $g(v_*X, v_*X) = 1$. Since J is ω -compatible, we can choose a basis

$$\{e_1,\cdots,e_n,f_1,\cdots,f_n\}$$

for $T_{V(p)}M$ such that $Je_i = f_i$, and

The idea is to choose a basis to look like \mathbb{C}^n . Write

$$v_*Y = \sum_{i=1} \left(a_i e_i + b_i f_i\right).$$

n

4

Now we can directly calculate

$$g(v_*X, v_*X) = 1$$

$$g(v_*X, v_*Y) = a_1$$

$$g(v_*Y, v_*Y) = \sum (a_i^2 + b_i^2)$$

MATH 242

so we have

$$\sqrt{\det(\cdots)} = \sqrt{-a_1^2 + \sum_{i=1}^2 (a_i^2 + b_i^2)}$$

and

$$\omega\left(v_{*}X,v_{*}Y\right)=b_{1}$$

so we get the desired inequality. Note this implies the image of du_p is complex linear.