LECTURE 13
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

1. J-HOLOMORPHIC CURVES

1.1. Definitions. Recall we were considering a symplectic manifold with an ω compatible acs $\left(M^{2 n}, \omega, J\right)$. Then a J-holomorphic map is $u:(\Sigma, j) \rightarrow(M, \omega, J)$ such that

$$
J \circ d u=d u \circ j
$$

Then we saw that if Σ is compact, then
(1) $\operatorname{area}(u)=\left\langle u_{*}[\Sigma],[\omega]\right\rangle$
(2) u minimizes area among smooth maps $u^{\prime}: \Sigma^{\prime} \rightarrow M$ in the same homology class.

Definition 1. A J-holomorphic curve is a J-holomorphic map $u:(\Sigma, j) \rightarrow(M, \omega, J)$ modulo the equivalence relation that u is equivalent to $u^{\prime}:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow(M, \omega, J)$ if there exists a biholomorphic map

$$
\varphi:(\Sigma, j) \xrightarrow{\cong}\left(\Sigma^{\prime}, j^{\prime}\right)
$$

such that $u=u^{\prime} \circ \varphi$.
Remark 1. An embedded J-holomorphic curve is determined by its image in M, and an embedded surface Σ in M is (the image of) an embedded J-holomorphic curve iff $J: T \Sigma \emptyset$.

Definition 2. A J-holomorphic curve u is multiply covered if there exists

where the map p is a branched cover of degree >1.
Recall a branched cover is locally modelled on $\mathbb{C} \rightarrow \mathbb{C}$ where $z \mapsto z^{m}$.
Definition 3. u is simple if it is not a multiple cover.
Note simple does not imply embedded, i.e. there can be singularities.
Definition 4. A J-holomorphic curve with k marked points consists of a holomorphic map

$$
u:(\Sigma, j) \rightarrow(M, \omega, J)
$$

[^0]together with $z_{1}, \cdots, z_{k} \in \Sigma$ distinct modulo

where the unlabelled map (which brings $z_{i} \mapsto z_{i}^{\prime}$) is biholomorphic.

1.2. Examples.

Example 1. Algebraic curves in $\mathbb{C P}^{2}$ equipped with $J_{\text {std }}$ are images of holomorphic maps.
Lemma 1. If $u:(\Sigma, j) \rightarrow(M, \omega, J), \Sigma$ is connected, compact, and $u_{*}[\Sigma]=0 \in$ $H_{2}(M ; \mathbb{R})$ then u is constant.
Proof. By the lemma from last lecture, area $(u)=0$. Choose local coordinate $z=s+i t$ on Σ. This means

$$
j \frac{\partial}{\partial s}=\frac{\partial}{\partial t} .
$$

Locally the condition of being a holomorphic curve then means that

$$
\frac{\partial u}{\partial t}=J \frac{\partial u}{\partial s}
$$

and the area integrand can be written:

$$
\begin{aligned}
\text { integrand } & =\sqrt{g\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial s}\right) g\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial t}\right)-g\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}\right)^{2}}|d s d t| \\
& =\sqrt{\omega\left(\frac{\partial u}{\partial s}, J \frac{\partial u}{\partial s}\right) \omega\left(\frac{\partial u}{\partial t}, J \frac{\partial u}{\partial t}\right)-\omega\left(\frac{\partial u}{\partial s}, J \frac{\partial u}{\partial t}\right)^{2}}|d s d t| \\
& =\sqrt{\omega\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}\right)^{2}}|d s d t| \\
& =\left|\frac{\partial u}{\partial s}\right|^{2}|d s d t|=\left|\frac{\partial u}{\partial t}\right||d s d t|
\end{aligned}
$$

but these are non-negative everywhere, so since the area is 0 we have

$$
\frac{\partial u}{\partial s} \equiv \frac{\partial u}{\partial t} \equiv 0
$$

which implies u is constant.
Example 2. Fix a compact surface (Σ, j) and fix $\left(M, \omega_{M}, J_{M}\right)$. Consider the product

$$
X=(\Sigma \times M, \underbrace{\omega_{\Sigma} \oplus \omega_{M}}_{\omega}, \underbrace{j \oplus J_{M}}_{J}) .
$$

If $p \in M$ then we can look at maps

$$
u_{p}: \Sigma \rightarrow X
$$

which send $z \mapsto(z, p)$. This map is J-holomorphic.

Claim 1. Every J-holomorphic curve in X in the homology class $[\Sigma] \times[\{\mathrm{pt}\}]$ is of the form u_{p}.
Proof. Let $u^{\prime}:\left(\Sigma^{\prime}, j^{\prime}\right) \rightarrow X$ be a J-holomorphic curve. Suppose $u_{*}^{\prime}\left[\Sigma^{\prime}\right]=\left[\Sigma^{\prime}\right] \times[\mathrm{pt}]$. Then we want to show that u^{\prime} is equivalent to some u_{p}.

Let $\pi: X \rightarrow M$ denote the projection. Then $\pi \circ u^{\prime}: \Sigma^{\prime} \rightarrow M$ is J_{M}-holomorphic and

$$
\left(\pi \circ u^{\prime}\right)_{*}\left[\Sigma^{\prime}\right]=0
$$

By the previous lemma, $\pi \circ u^{\prime}$ is constant. Denote its image by $\{p\}$. Then

$$
\operatorname{im}\left(u^{\prime}\right) \subseteq \Sigma \times\{p\}
$$

Let $\rho: X \rightarrow \Sigma$ denote the other projection. Then $\rho \circ u^{\prime}: \Sigma^{\prime} \rightarrow \Sigma$ is j holomorphic. We have

$$
\left(\rho \circ u^{\prime}\right)_{*}\left[\Sigma^{\prime}\right]=[\Sigma]
$$

Then $\rho \circ u^{\prime}$ is a degree 1 branch cover, and hence a diffeomorphism. So $\rho \circ u^{\prime}$ is a biholomorphic map showing $u^{\prime} \sim u_{p}$. So the diagram is

2. Gromov non-sQuEEZING

2.1. Strategy. Start with a symplectic embedding $\varphi: B(r) \stackrel{s}{\hookrightarrow} Z(r)$ where

$$
\begin{aligned}
& B(r)=\left\{\left.z \in \mathbb{C}^{n}|\pi| z\right|^{2} \leq r\right\} \\
& Z(r)=\left\{\left.z \in \mathbb{C}^{n}|\pi| z_{1}\right|^{2} \leq R\right\}
\end{aligned}
$$

Now we go on a search for a holomorphic curve.
First we fix some notation. For $A \in H_{2}(X)$, we write

$$
m_{g, k}^{J}(X, \omega, A)
$$

for the collection of J-holomorphic curves u which have k marked points, are in the homology class A, and with domain a genus g compact Riemann surface. For $i=1, \cdots, k$ we write ev_{i} for the evaluation map:

$$
\begin{array}{r}
m_{g, k}^{J} \xrightarrow{\mathrm{ev}_{i}} X \\
\left(u, \Sigma, z_{1}, \cdots, z_{k}\right) \longmapsto u\left(z_{i}\right) .
\end{array}
$$

We can write $Z(R)$ as the product of the disk of area R with \mathbb{C}^{n-1}, and then we have a symplectic inclusion

$$
Z(R) \hookrightarrow S^{2}(R+\epsilon) \times \mathbb{C}^{n-1}
$$

where $S^{2}(R+\epsilon)$ is a 2 -sphere with a symplectic form of area $R+\epsilon$. Let $\hat{\varphi}: B(r) \hookrightarrow$ $S^{2}(R+\epsilon) \times \mathbb{C}^{n-1}$ be the composition. Since $B(r)$ is compact, its image is bounded. Let $T=\mathbb{C}^{n-1} / c \mathbb{Z}^{2 n-2}$ where $c \gg 0$. Then the composition

$$
\tilde{\varphi}: B(r) \hookrightarrow S^{2}(R+\epsilon) \times \mathbb{C}^{n-1} \rightarrow S^{2} \times T
$$

Figure 1. On the left we have $\tilde{\varphi}: B(r) \rightarrow S^{2} \times T$ with blue image. Then we have a map from $u: S^{2} \rightarrow S^{2} \times T$. The image of this map (in red) contains the center of the image of the ball. Then the inverse image under u of the image of $\tilde{\varphi}, \Sigma$, is the domain of the map $\psi:=\tilde{\varphi}^{-1} \circ u$. The region outlined inside of $B(r)$ is $\left(\tilde{\varphi}^{-1} \circ u\right)(\Sigma)$.
is still a symplectic embedding.
Let J be a compatible acs on $S^{2}(R+\epsilon) \times T$ such that on $\tilde{\varphi}(B(r))$ it agrees with $\tilde{\varphi}_{*}\left(J_{0}\right)$ where J_{0} is the standard acs on \mathbb{C}^{n}. We can do this because the space of compatible acs is contractible.

Consider $m_{0,1}^{J}\left(S^{2}(R+\epsilon) \times T, \omega,\left[S^{2}\right] \times[\mathrm{pt}]\right)$. So these are holomorphic spheres in this manifold with one marked point. Then the evaluation map ev ${ }_{1}$ maps

$$
\mathrm{ev}_{1}: m_{0,1}^{J}\left(S^{2}(R+\epsilon) \times T, \omega,\left[S^{2}\right] \times[\mathrm{pt}]\right) \rightarrow S^{2}(R+\epsilon) \times T
$$

The key point which we will prove next time is:

this map is surjective!

That is, for every $p \in S^{2} \times T$, there is a J-holomorphic sphere in the class $\left[S^{2}\right] \times[\mathrm{pt}]$ "going through" p.

Gromov nonsqueezing follows (almost) immediately from this. We can deduce nonsqueezing as follows. Let $u: S^{2} \rightarrow S^{2} \times T$ be a curve given by the key fact with $\operatorname{im}(u) \ni \tilde{\varphi}(0)$, i.e. a curve containing the center of the ball. Let

$$
\Sigma=u^{-1}(\tilde{\varphi}(B(r))) \subset S^{2}
$$

Consider the map

$$
\tilde{\varphi}^{-1} \circ u: \Sigma \rightarrow B(r)
$$

which is actually J_{0}-holomorphic. The picture is as in fig. 1.
Now let's see what we ended up with. ${ }^{1}$ The upshot is that, after some tweaking to get boundary transversality, we have (Σ, j) a compact Riemann surface with boundary, and a J_{0}-holomorphic map $\psi=\tilde{\varphi}^{-1} \circ u$ which maps

$$
\Sigma \rightarrow B(r) \quad \partial \Sigma \rightarrow \partial B(r)
$$

And in particular,

$$
\text { area }(\psi)<R+\epsilon
$$

Now we have the following lemma:

[^1]Lemma 2 (Monotonicity lemma for minimal surfaces). Let Σ be a compact Riemann surface with boundary. If $\psi: \Sigma \rightarrow B(r), 0 \in \operatorname{im}(\psi)$, and ψ minimizes area relative to its boundary, then area $(\psi) \leq r$.

Such inequalities are sometimes called reverse isoperimetric inequalities.
Now by lemma 2, we have area $(\psi) \leq r$, which implies $r<R+\epsilon$. But since ϵ is arbitrary we have $r \leq R$ so we are done.

So next time we will prove lemma 2, and then we have to think about why such a holomorphic curve exists, i.e. we will prove that this evaluation map is surjective.

[^0]: Date: March 7, 2019.

[^1]: ${ }^{1}$ Professor Hutchings says that at this point we should thank J-holomorphic curves and put some money in the tip jar.

