LECTURE 13 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. J-HOLOMORPHIC CURVES

1.1. **Definitions.** Recall we were considering a symplectic manifold with an ω compatible acs (M^{2n}, ω, J) . Then a *J*-holomorphic map is $u : (\Sigma, j) \to (M, \omega, J)$ such that

$$J \circ du = du \circ j$$
.

Then we saw that if Σ is compact, then

- (1) area $(u) = \langle u_* [\Sigma], [\omega] \rangle$
- (2) u minimizes area among smooth maps $u':\Sigma'\to M$ in the same homology class.

Definition 1. A *J*-holomorphic curve is a *J*-holomorphic map $u : (\Sigma, j) \to (M, \omega, J)$ modulo the equivalence relation that u is equivalent to $u' : (\Sigma', j') \to (M, \omega, J)$ if there exists a biholomorphic map

$$\varphi: (\Sigma, j) \xrightarrow{\cong} (\Sigma', j')$$

such that $u = u' \circ \varphi$.

Remark 1. An embedded *J*-holomorphic curve is determined by its image in M, and an embedded surface Σ in M is (the image of) an embedded *J*-holomorphic curve iff $J: T\Sigma \odot$.

Definition 2. A *J*-holomorphic curve *u* is *multiply covered* if there exists

$$\begin{array}{c} (\Sigma,j) \xrightarrow{u} (M,\omega,J) \\ \downarrow^{p} & \overbrace{(\Sigma',j')}^{u'} \end{array}$$

where the map p is a branched cover of degree > 1.

Recall a branched cover is locally modelled on $\mathbb{C} \to \mathbb{C}$ where $z \mapsto z^m$.

Definition 3. u is simple if it is not a multiple cover.

Note simple does not imply embedded, i.e. there can be singularities.

Definition 4. A *J*-holomorphic curve with k marked points consists of a holomorphic map

$$u: (\Sigma, j) \to (M, \omega, J)$$

Date: March 7, 2019.

together with $z_1, \cdots, z_k \in \Sigma$ distinct modulo

where the unlabelled map (which brings $z_i \mapsto z'_i$) is biholomorphic.

1.2. Examples.

Example 1. Algebraic curves in \mathbb{CP}^2 equipped with J_{std} are images of holomorphic maps.

Lemma 1. If $u : (\Sigma, j) \to (M, \omega, J)$, Σ is connected, compact, and $u_* [\Sigma] = 0 \in H_2(M; \mathbb{R})$ then u is constant.

Proof. By the lemma from last lecture, area (u) = 0. Choose local coordinate z = s + it on Σ . This means

$$j\frac{\partial}{\partial s} = \frac{\partial}{\partial t}$$
.

Locally the condition of being a holomorphic curve then means that

$$\frac{\partial u}{\partial t} = J \frac{\partial u}{\partial s}$$

and the area integrand can be written:

$$integrand = \sqrt{g\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial s}\right)g\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial t}\right) - g\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}\right)^2} |ds dt|$$
$$= \sqrt{\omega\left(\frac{\partial u}{\partial s}, J\frac{\partial u}{\partial s}\right)\omega\left(\frac{\partial u}{\partial t}, J\frac{\partial u}{\partial t}\right) - \omega\left(\frac{\partial u}{\partial s}, J\frac{\partial u}{\partial t}\right)^2} |ds dt|$$
$$= \sqrt{\omega\left(\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}\right)^2} |ds dt|$$
$$= \left|\frac{\partial u}{\partial s}\right|^2 |ds dt| = \left|\frac{\partial u}{\partial t}\right| |ds dt|$$

but these are non-negative everywhere, so since the area is 0 we have

$$\frac{\partial u}{\partial s} \equiv \frac{\partial u}{\partial t} \equiv 0$$

which implies u is constant.

Example 2. Fix a compact surface (Σ, j) and fix (M, ω_M, J_M) . Consider the product

$$X = \left(\Sigma \times M, \underbrace{\omega_{\Sigma} \oplus \omega_{M}}_{\omega}, \underbrace{j \oplus J_{M}}_{J} \right) \; .$$

If $p \in M$ then we can look at maps

 $u_p: \Sigma \to X$

which send $z \mapsto (z, p)$. This map is *J*-holomorphic.

Claim 1. Every *J*-holomorphic curve in *X* in the homology class $[\Sigma] \times [\{pt\}]$ is of the form u_p .

Proof. Let $u': (\Sigma', j') \to X$ be a *J*-holomorphic curve. Suppose $u'_*[\Sigma'] = [\Sigma'] \times [\text{pt}]$. Then we want to show that u' is equivalent to some u_p .

Let $\pi: X \to M$ denote the projection. Then $\pi \circ u': \Sigma' \to M$ is J_M -holomorphic and

$$\left(\pi \circ u'\right)_* \left[\Sigma'\right] = 0 \; .$$

By the previous lemma, $\pi \circ u'$ is constant. Denote its image by $\{p\}$. Then

$$\operatorname{im}(u') \subseteq \Sigma \times \{p\}$$
.

Let $\rho: X \to \Sigma$ denote the other projection. Then $\rho \circ u': \Sigma' \to \Sigma$ is *j*-holomorphic. We have

$$\left(\rho \circ u'\right)_* \left[\Sigma'\right] = \left[\Sigma\right]$$

Then $\rho \circ u'$ is a degree 1 branch cover, and hence a diffeomorphism. So $\rho \circ u'$ is a biholomorphic map showing $u' \sim u_p$. So the diagram is

2. Gromov Non-Squeezing

2.1. **Strategy.** Start with a symplectic embedding $\varphi : B(r) \stackrel{s}{\hookrightarrow} Z(r)$ where

$$B(r) = \left\{ z \in \mathbb{C}^n |\pi| |z|^2 \le r \right\}$$
$$Z(r) = \left\{ z \in \mathbb{C}^n |\pi| |z_1|^2 \le R \right\}$$

Now we go on a search for a holomorphic curve.

First we fix some notation. For $A \in H_2(X)$, we write

$$m_{g,k}^{J}(X,\omega,A)$$

for the collection of *J*-holomorphic curves u which have k marked points, are in the homology class A, and with domain a genus g compact Riemann surface. For $i = 1, \dots, k$ we write ev_i for the evaluation map:

$$m_{g,k}^J \xrightarrow{\operatorname{ev}_i} X$$

$$(u, \Sigma, z_1, \cdots, z_k) \longmapsto u(z_i)$$
.

We can write Z(R) as the product of the disk of area R with \mathbb{C}^{n-1} , and then we have a symplectic inclusion

$$Z(R) \hookrightarrow S^2(R+\epsilon) \times \mathbb{C}^{n-1}$$

where $S^2(R + \epsilon)$ is a 2-sphere with a symplectic form of area $R + \epsilon$. Let $\hat{\varphi} : B(r) \hookrightarrow S^2(R + \epsilon) \times \mathbb{C}^{n-1}$ be the composition. Since B(r) is compact, its image is bounded. Let $T = \mathbb{C}^{n-1}/c\mathbb{Z}^{2n-2}$ where $c \gg 0$. Then the composition

$$\tilde{\varphi}: B(r) \hookrightarrow S^2(R+\epsilon) \times \mathbb{C}^{n-1} \to S^2 \times T$$

FIGURE 1. On the left we have $\tilde{\varphi} : B(r) \to S^2 \times T$ with blue image. Then we have a map from $u : S^2 \to S^2 \times T$. The image of this map (in red) contains the center of the image of the ball. Then the inverse image under u of the image of $\tilde{\varphi}, \Sigma$, is the domain of the map $\psi := \tilde{\varphi}^{-1} \circ u$. The region outlined inside of B(r) is $(\tilde{\varphi}^{-1} \circ u) (\Sigma)$.

is still a symplectic embedding.

4

Let J be a compatible acs on $S^2(R + \epsilon) \times T$ such that on $\tilde{\varphi}(B(r))$ it agrees with $\tilde{\varphi}_*(J_0)$ where J_0 is the standard acs on \mathbb{C}^n . We can do this because the space of compatible acs is contractible.

Consider $m_{0,1}^J (S^2 (R + \epsilon) \times T, \omega, [S^2] \times [\text{pt}])$. So these are holomorphic spheres in this manifold with one marked point. Then the evaluation map ev_1 maps

$$\operatorname{ev}_{1}: m_{0,1}^{J}\left(S^{2}\left(R+\epsilon\right) \times T, \omega, \left[S^{2}\right] \times \left[\operatorname{pt}\right]\right) \to S^{2}\left(R+\epsilon\right) \times T .$$

The key point which we will prove next time is:

this map is surjective!

That is, for every $p \in S^2 \times T$, there is a *J*-holomorphic sphere in the class $[S^2] \times [pt]$ "going through" p.

Gromov nonsqueezing follows (almost) immediately from this. We can deduce nonsqueezing as follows. Let $u: S^2 \to S^2 \times T$ be a curve given by the key fact with $\operatorname{im}(u) \ni \tilde{\varphi}(0)$, i.e. a curve containing the center of the ball. Let

$$\Sigma = u^{-1} \left(\tilde{\varphi} \left(B \left(r \right) \right) \right) \subset S^2$$

Consider the map

$$\tilde{\varphi}^{-1}\circ u:\Sigma\rightarrow B\left(r\right) \ ,$$

which is actually J_0 -holomorphic. The picture is as in fig. 1.

Now let's see what we ended up with.¹ The upshot is that, after some tweaking to get boundary transversality, we have (Σ, j) a compact Riemann surface with boundary, and a J_0 -holomorphic map $\psi = \tilde{\varphi}^{-1} \circ u$ which maps

$$\Sigma \to B(r)$$
 $\partial \Sigma \to \partial B(r)$.

And in particular,

area
$$(\psi) < R + \epsilon$$
.

Now we have the following lemma:

¹Professor Hutchings says that at this point we should thank J-holomorphic curves and put some money in the tip jar.

Lemma 2 (Monotonicity lemma for minimal surfaces). Let Σ be a compact Riemann surface with boundary. If $\psi : \Sigma \to B(r), 0 \in \operatorname{im}(\psi)$, and ψ minimizes area relative to its boundary, then area $(\psi) \leq r$.

Such inequalities are sometimes called reverse isoperimetric inequalities.

Now by lemma 2, we have area $(\psi) \leq r$, which implies $r < R + \epsilon$. But since ϵ is arbitrary we have $r \leq R$ so we are done.

So next time we will prove lemma 2, and then we have to think about why such a holomorphic curve exists, i.e. we will prove that this evaluation map is surjective.