LECTURE 16 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. TRANSVERSALITY

Recall we were discussing transversality of holomorphic curves. Fix (Σ, j) some compact Riemann surface of genus g. Recall a holomorphic curve is a map

$$u: (\Sigma, j) \to (M, J)$$

such that

$$J \circ du = du \circ j : T_p \Sigma \to T_{u(p)} M$$

We can rewrite this to be:

 $du + J \circ du \circ j = 0$

and then the derivative of this equation is a first order differential operator

$$D_u: \Gamma(u^*TM) \to \Gamma(T^{0,1}\Sigma \otimes_{\mathbb{C}} u^*TM) = \operatorname{Hom}^{0,1}(T\Sigma, u^*TM)$$

In a local coordinate z = s + it on Σ and local trivialization of u^*TM we have

 $D_{u}\psi = (\partial_{s}\psi + i\partial_{t}\psi + A(s,t)\psi) \otimes (ds - idt)$

where A is a $2n \times 2n$ real matrix.

Recall that D_u is Fredholm and

$$\operatorname{nd}(D_u) = n(2-2g) + 2c_1(u^*TM)$$
.

If D_u is surjective, then the moduli space of holomorphic maps

$$m_{(\Sigma,j)}^{J}(M,\omega,J)$$

is naturally a manifold near u of dimension ind (D_u) with $T_u m = \ker (D_u)$. In this case we say that u is "cut out transversely" (as a holomorphic map).

Example 1. Let n > 1. Suppose $M = \Sigma \times N^{2n-2}$ with $\omega_M = \omega_{\Sigma} \oplus \omega_M$ and $J = j \oplus J_N$. Take

$$u:\Sigma\to M$$

to take $z \mapsto (z, p)$ where $p \in N$ is fixed. Then we have

$$D_u: \Gamma(u^*TM) \to \Gamma(T^{0,1}\Sigma \otimes u^*TM)$$

where

$$u^*TM = T\Sigma \oplus T_pN = T\Sigma \oplus \underline{\mathbb{C}^{n-1}}$$

where the second term is the trivial bundle with fiber \mathbb{C}^{n-1} . Note that D_u respects the direct sum decomposition and is $\bar{\partial}$ on each factor.

Now the question is if D_u is surjective. First of all the index is

ind
$$(D_u) = n (2 - 2g) + 2 (2 - 2g) = (n + 2) (2 - 2g)$$
.

Date: March 29, 2019.

If g > 0, then ind $(D_u) \le 0$. We also have that dim ker $D_u \ge 2n - 2$ which implies dim coker $D_u > 0$ which implies D_u is not surjective. In fact if we perturb J then the holomorphic curves disappear except maybe finitely many when g = 0.

Claim 1. If g = 0 then D_u is surjective.

Proof. In this case, ind $(D_u) = (2n - 2) + 6$ and

$$\dim \ker \left(D_u \right) = \left(2n - 2 \right) + 6$$

where the first term comes from constant sections of T_pN and the second term comes from the space of infinitesimal automorphisms of S^2 (flt). This means there cannot be any cokernel.

1.1. Useful facts about Cauchy Riemann type operators. These facts are actually true for Cauchy-Riemann (CR) type operators, i.e. those which look like $\bar{\partial}$ plus a zero order term, but we will primarily be interested in the D_u case.

Fact 1 (Unique continuation). Let D be a CR operator. If $D\psi \equiv 0$ and ψ vanishes to infinite order at a point, then $\psi \equiv 0$.

Fact 2. If $D : \Gamma(L) \to \Gamma(T^{0,1}\Sigma \otimes L)$ is a CR operator where L is a line bundle, if $D\psi \equiv 0$ then every zero of ψ is isolated and has positive multiplicity.

In particular, if ker $D \neq 0$ then $c_1(L) \geq 0$ with equality iff this section is non-vanishing.

Both facts are proved using the "Carleman similarity principle." Roughly speaking, this says that near a zero of ψ , there is a trivialization in which ψ is a holomorphic function.

Remark 1. Let $E, F \to M$ be two bundles (equipped with metrics) over a compact Riemannian manifold M. Consider some differential operator

$$D: \Gamma\left(E\right) \to \Gamma\left(F\right)$$

Then we have a formal adjoint

$$D^*: \Gamma(F) \to \Gamma(E)$$

such that

$$\int_M \left\langle D\psi,\eta\right\rangle = \int_M \left\langle \psi,D^*\eta\right\rangle \ .$$

For the CR operator, we have that locally

$$D \sim_{\text{loc}} \partial_s + i\partial_t + A(s,t)$$
 $D^* \sim_{\text{loc}} -\partial_s + i\partial_t + A(s,t)^*$

If $D^*\eta = 0$ and $\eta \neq 0$, then by fact 2, any zero of η is isolated and has negative multiplicity. So if a CR operator

$$D: \Gamma(L) \to \Gamma\left(T^{0,1}\Sigma \otimes L\right)$$

has a nonzero cokernel, then

$$c_1(T^{0,1}\Sigma \otimes L) = \chi(\Sigma) + c_1(L) = 2 - 2g + c_1(L) \le 0$$
.

Therefore if $2 - 2g + c_1(L) > 0$ then D is automatically surjective.

FIGURE 1. The horizontal axis is the space \mathcal{J} , and the vertical axis consists of all maps $u: \Sigma \to M$. Then the idea is that the blue fiber is some m^J which is cut out transversely, and the red fiber is not.

Example 2. Consider the product curves in $S^2 \times N$. In this case we had

$$D_u: \Gamma\left(TS^2 \oplus \underline{T_pN}\right) \to \Gamma\left(T^{0,1}S^2 \otimes (\cdots)\right)$$
.

Then this splits as

$$D_u: \Gamma\left(TS^2\right) \to \Gamma\left(T^{0,1}S^2 \otimes S^2\right)$$

plus n-1 copies of

$$D_u: \Gamma(\underline{\mathbb{C}}) \to \Gamma(T^{0,1}S^2 \otimes \underline{\mathbb{C}})$$

We argued directly that the operator was surjective. But now we can see that in the first term we have $2 - 2g + c_1(L) = 4$ and in the second $2 - 2g + c_1(L) = 2$ so by the above remark this is surjective.

2. TRANSVERSALITY THEOREM

Theorem 1. If J is generic, them $m_{(\Sigma,j)}^J(M,\omega)^*$ is cut out transversely.

Generic means that the set of J with this property is a countable intersection with open dense sets in the space of all J. By the Baire category theorem this implies the set of such J is dense. The full details are in big McDuff Salamon chapter 3.

Outline of proof. Let \mathcal{J} be the set of all ω -compatible acs. Define the universal moduli space

$$\mathcal{U} = \left\{ (J, u) \mid J \in \mathcal{J}, u \in m_{(\Sigma, j)}^J (X, \omega)^* \right\}$$

The first step is to prove that \mathcal{U} is cut out transversely. There is a projection $\pi : \mathcal{U} \to \mathcal{U}$ which sends $(J, u) \mapsto J$. The Sard-Smale theorem tells us that a generic J is a regular value of π . The picture is as in fig. 1.

Now we show how to prove \mathcal{U} is cut out transversely. Consider

$$\begin{array}{c} \mathcal{E} \\ \psi \uparrow \\ \mathcal{J} \\ \mathcal{J} \times \operatorname{Maps}\left(\Sigma, M\right)^{*} \end{array}$$

where

$$\mathcal{E}(J,U) = \Gamma\left(T^{0,1}\Sigma \otimes u^*TM\right) \qquad \qquad \psi(J,u) = du + J \circ du \circ j .$$

By definition $\mathcal{U} = \psi^{-1}(0)$. By the implicit function theorem, in order to show that \mathcal{U} is cut out transversely we need to show that if $(J, u) \in \psi^{-1}(0)$ then

$$D\psi: T_{(J,u)}(\mathcal{J} \times \mathrm{Maps}) \to \mathcal{E}_{(J,u)}$$

is surjective. We have that

$$D\psi: T_J\mathcal{J}\oplus \Gamma(u^*TM) \to \Gamma(T^{0,1}\Sigma \otimes u^*TM)$$

The idea is somehow that we haven't changed the codomain, we have just enlarged the domain to make it easier to prove surjectivity. Explicitly we have that

$$D\psi\left(\dot{J},\eta\right) = \dot{J} \circ \, du \, \circ j + D_u \eta$$

The cokernel of this is at most finite dimensional and the range is closed. So to prove this is surjective it is enough to show that if ζ is perpendicular to the image of $D\psi$, then $\zeta = 0$. So suppose $\zeta \perp \operatorname{im}(D\psi)$. In particular this means $\zeta \perp \operatorname{im}(D_u)$, so $\zeta \in \ker(D_i^*)$. By Carleman similarity (unique continuation) it is enough to show that ζ vanishes to infinite order at some point. So now we need some lemmas.¹

Lemma 1. The fact that u is simple means that u is somewhere injective, i.e. there is $z \in \Sigma$ such that du_z is injective and $u^{-1}(u(z)) = z$.

Lemma 2. There exists some \dot{J} which is supported in an arbitrarily small neighborhood of z such that $(\dot{J} \circ du \circ j)(z) = \zeta(z)$. In other words we have the freedom to move J such that as long as du is injective $\dot{J} \circ du \circ j$ can be anything we want.

Then $\zeta \perp D_u(\dot{J}, 0)$ implies that $\zeta(z) = 0$.

This implies that ζ vanishes on a nonempty open set (the somewhere injective points) so $\zeta \equiv 0$.

¹See McDuff-Salamon for the proofs.