LECTURE 16
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

1. Transversality

Recall we were discussing transversality of holomorphic curves. Fix (Σ, j) some compact Riemann surface of genus g. Recall a holomorphic curve is a map

$$
u:(\Sigma, j) \rightarrow(M, J)
$$

such that

$$
J \circ d u=d u \circ j: T_{p} \Sigma \rightarrow T_{u(p)} M
$$

We can rewrite this to be:

$$
d u+J \circ d u \circ j=0
$$

and then the derivative of this equation is a first order differential operator

$$
D_{u}: \Gamma\left(u^{*} T M\right) \rightarrow \Gamma\left(T^{0,1} \Sigma \otimes_{\mathbb{C}} u^{*} T M\right)=\operatorname{Hom}^{0,1}\left(T \Sigma, u^{*} T M\right)
$$

In a local coordinate $z=s+i t$ on Σ and local trivialization of $u^{*} T M$ we have

$$
D_{u} \psi=\left(\partial_{s} \psi+i \partial_{t} \psi+A(s, t) \psi\right) \otimes(d s-i d t)
$$

where A is a $2 n \times 2 n$ real matrix.
Recall that D_{u} is Fredholm and

$$
\operatorname{ind}\left(D_{u}\right)=n(2-2 g)+2 c_{1}\left(u^{*} T M\right)
$$

If D_{u} is surjective, then the moduli space of holomorphic maps

$$
m_{(\Sigma, j)}^{J}(M, \omega, J)
$$

is naturally a manifold near u of dimension $\operatorname{ind}\left(D_{u}\right)$ with $T_{u} m=\operatorname{ker}\left(D_{u}\right)$. In this case we say that u is "cut out transversely" (as a holomorphic map).
Example 1. Let $n>1$. Suppose $M=\Sigma \times N^{2 n-2}$ with $\omega_{M}=\omega_{\Sigma} \oplus \omega_{M}$ and $J=j \oplus J_{N}$. Take

$$
u: \Sigma \rightarrow M
$$

to take $z \mapsto(z, p)$ where $p \in N$ is fixed. Then we have

$$
D_{u}: \Gamma\left(u^{*} T M\right) \rightarrow \Gamma\left(T^{0,1} \Sigma \otimes u^{*} T M\right)
$$

where

$$
u^{*} T M=T \Sigma \oplus \underline{T_{p} N}=T \Sigma \oplus \underline{\mathbb{C}^{n-1}}
$$

where the second term is the trivial bundle with fiber \mathbb{C}^{n-1}. Note that D_{u} respects the direct sum decomposition and is $\bar{\partial}$ on each factor.

Now the question is if D_{u} is surjective. First of all the index is

$$
\operatorname{ind}\left(D_{u}\right)=n(2-2 g)+2(2-2 g)=(n+2)(2-2 g)
$$

Date: March 29, 2019.

If $g>0$, then ind $\left(D_{u}\right) \leq 0$. We also have that $\operatorname{dim} \operatorname{ker} D_{u} \geq 2 n-2$ which implies dim coker $D_{u}>0$ which implies D_{u} is not surjective. In fact if we perturb J then the holomorphic curves disappear except maybe finitely many when $g=0$.

Claim 1. If $g=0$ then D_{u} is surjective.
Proof. In this case, ind $\left(D_{u}\right)=(2 n-2)+6$ and

$$
\operatorname{dim} \operatorname{ker}\left(D_{u}\right)=(2 n-2)+6
$$

where the first term comes from constant sections of $T_{p} N$ and the second term comes from the space of infinitesimal automorphisms of S^{2} (flt). This means there cannot be any cokernel.
1.1. Useful facts about Cauchy Riemann type operators. These facts are actually true for Cauchy-Riemann (CR) type operators, i.e. those which look like $\bar{\partial}$ plus a zero order term, but we will primarily be interested in the D_{u} case.

Fact 1 (Unique continuation). Let D be a $C R$ operator. If $D \psi \equiv 0$ and ψ vanishes to infinite order at a point, then $\psi \equiv 0$.

Fact 2. If $D: \Gamma(L) \rightarrow \Gamma\left(T^{0,1} \Sigma \otimes L\right)$ is a CR operator where L is a line bundle, if $D \psi \equiv 0$ then every zero of ψ is isolated and has positive multiplicity.

In particular, if $\operatorname{ker} D \neq 0$ then $c_{1}(L) \geq 0$ with equality iff this section is nonvanishing.

Both facts are proved using the "Carleman similarity principle." Roughly speaking, this says that near a zero of ψ, there is a trivialization in which ψ is a holomorphic function.

Remark 1. Let $E, F \rightarrow M$ be two bundles (equipped with metrics) over a compact Riemannian manifold M. Consider some differential operator

$$
D: \Gamma(E) \rightarrow \Gamma(F) .
$$

Then we have a formal adjoint

$$
D^{*}: \Gamma(F) \rightarrow \Gamma(E)
$$

such that

$$
\int_{M}\langle D \psi, \eta\rangle=\int_{M}\left\langle\psi, D^{*} \eta\right\rangle
$$

For the CR operator, we have that locally

$$
D \sim_{\mathrm{loc}} \partial_{s}+i \partial_{t}+A(s, t) \quad D^{*} \sim_{\mathrm{loc}}-\partial_{s}+i \partial_{t}+A(s, t)^{*}
$$

If $D^{*} \eta=0$ and $\eta \not \equiv 0$, then by fact 2 , any zero of η is isolated and has negative multiplicity. So if a CR operator

$$
D: \Gamma(L) \rightarrow \Gamma\left(T^{0,1} \Sigma \otimes L\right)
$$

has a nonzero cokernel, then

$$
c_{1}\left(T^{0,1} \Sigma \otimes L\right)=\chi(\Sigma)+c_{1}(L)=2-2 g+c_{1}(L) \leq 0 .
$$

Therefore if $2-2 g+c_{1}(L)>0$ then D is automatically surjective.

Figure 1. The horizontal axis is the space \mathcal{J}, and the vertical axis consists of all maps $u: \Sigma \rightarrow M$. Then the idea is that the blue fiber is some m^{J} which is cut out transversely, and the red fiber is not.

Example 2. Consider the product curves in $S^{2} \times N$. In this case we had

$$
D_{u}: \Gamma\left(T S^{2} \oplus \underline{T_{p} N}\right) \rightarrow \Gamma\left(T^{0,1} S^{2} \otimes(\cdots)\right)
$$

Then this splits as

$$
D_{u}: \Gamma\left(T S^{2}\right) \rightarrow \Gamma\left(T^{0,1} S^{2} \otimes S^{2}\right)
$$

plus $n-1$ copies of

$$
D_{u}: \Gamma(\underline{\mathbb{C}}) \rightarrow \Gamma\left(T^{0,1} S^{2} \otimes \mathbb{C}\right)
$$

We argued directly that the operator was surjective. But now we can see that in the first term we have $2-2 g+c_{1}(L)=4$ and in the second $2-2 g+c_{1}(L)=2$ so by the above remark this is surjective.

2. TRANSVERSALITY THEOREM

Theorem 1. If J is generic, them $m_{(\Sigma, j)}^{J}(M, \omega)^{*}$ is cut out transversely.
Generic means that the set of J with this property is a countable intersection with open dense sets in the space of all J. By the Baire category theorem this implies the set of such J is dense. The full details are in big McDuff Salamon chapter 3.

Outline of proof. Let \mathcal{J} be the set of all ω-compatible acs. Define the universal moduli space

$$
\mathcal{U}=\left\{(J, u) \mid J \in \mathcal{J}, u \in m_{(\Sigma, j)}^{J}(X, \omega)^{*}\right\}
$$

The first step is to prove that \mathcal{U} is cut out transversely. There is a projection $\pi: \mathcal{U} \rightarrow \mathcal{U}$ which sends $(J, u) \mapsto J$. The Sard-Smale theorem tells us that a generic J is a regular value of π. The picture is as in fig. 1.

Now we show how to prove \mathcal{U} is cut out transversely. Consider

where

$$
\mathcal{E}(J, U)=\Gamma\left(T^{0,1} \Sigma \otimes u^{*} T M\right) \quad \psi(J, u)=d u+J \circ d u \circ j
$$

By definition $\mathcal{U}=\psi^{-1}(0)$. By the implicit function theorem, in order to show that \mathcal{U} is cut out transversely we need to show that if $(J, u) \in \psi^{-1}(0)$ then

$$
D \psi: T_{(J, u)}(\mathcal{J} \times \mathrm{Maps}) \rightarrow \mathcal{E}_{(J, u)}
$$

is surjective. We have that

$$
D \psi: T_{J} \mathcal{J} \oplus \Gamma\left(u^{*} T M\right) \rightarrow \Gamma\left(T^{0,1} \Sigma \otimes u^{*} T M\right)
$$

The idea is somehow that we haven't changed the codomain, we have just enlarged the domain to make it easier to prove surjectivity. Explicitly we have that

$$
D \psi(\dot{J}, \eta)=\dot{J} \circ d u \circ j+D_{u} \eta .
$$

The cokernel of this is at most finite dimensional and the range is closed. So to prove this is surjective it is enough to show that if ζ is perpendicular to the image of $D \psi$, then $\zeta=0$. So suppose $\zeta \perp \operatorname{im}(D \psi)$. In particular this means $\zeta \perp \operatorname{im}\left(D_{u}\right)$, so $\zeta \in \operatorname{ker}\left(D_{i}^{*}\right)$. By Carleman similarity (unique continuation) it is enough to show that ζ vanishes to infinite order at some point. So now we need some lemmas. ${ }^{1}$

Lemma 1. The fact that u is simple means that u is somewhere injective, i.e. there is $z \in \Sigma$ such that $d u_{z}$ is injective and $u^{-1}(u(z))=z$.

Lemma 2. There exists some \dot{J} which is supported in an arbitrarily small neighborhood of z such that $(\dot{J} \circ d u \circ j)(z)=\zeta(z)$. In other words we have the freedom to move J such that as long as $d u$ is injective $\dot{J} \circ d u \circ j$ can be anything we want.

Then $\zeta \perp D_{u}(\dot{J}, 0)$ implies that $\zeta(z)=0$.
This implies that ζ vanishes on a nonempty open set (the somewhere injective points) so $\zeta \equiv 0$.

[^0]
[^0]: ${ }^{1}$ See McDuff-Salamon for the proofs.

