LECTURE 19
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

Recall last time we had the following:
Proposition 1. Let J be any compatible acs on $\left(S^{2} \times S^{2}, \omega \oplus \omega\right)$. Then $S^{2} \times S^{2}$ has a foliation by J-holomorphic sphere in the class $(1,0) \in H_{2}\left(S^{2} \times S^{2}\right)$ (A-spheres) and a foliation by J-holomorphic spheres in the class $(0,1) \in H_{2}\left(S^{2} \times S^{2}\right)$ (B sphere). Each A-sphere transversely intersects each B-sphere at a single point.

We introduced this to prove recognition of \mathbb{R}^{4}, but we will first use it to show another theorem of Gromov:

Theorem 1 (Gromov). The inclusion

$$
\mathrm{SO}(3) \times \mathrm{SO}(3) \hookrightarrow \operatorname{Symp}_{0}\left(S^{2} \times S^{2}, \omega \oplus \omega\right)
$$

(where the symplectic forms ω have equal area, and Symp $_{0}$ denotes the identity component of the symplectomorphism group) is a homotopy equivalence.

Proof. Fix $p \in S^{2}$. Let X be the set of triples:

$$
X=\left\{\left(J, \varphi_{1}, \varphi_{2}\right)\right\}
$$

where J is a compatible acs $S^{2} \times S^{2}$, and the φ_{i} are symplectomorphisms:

$$
\begin{aligned}
& \varphi_{1}: S^{2} \simeq(A \text {-sphere through } p) \\
& \varphi_{2}: S^{2} \xrightarrow{\simeq}(B \text {-sphere through } p) .
\end{aligned}
$$

Note that X is homotopy equivalent to $\mathrm{SO}(3) \times \mathrm{SO}(3)$.
Now we define

$$
f: X \rightarrow \operatorname{Symp}_{0}\left(S^{2} \times S^{2}\right)
$$

Given $\left(J, \varphi_{1}, \varphi_{2}\right) \in X$ define $\psi \in \operatorname{Symp}_{0}\left(S^{2} \times S^{2}\right)$ as follows. First define $\psi_{0} \in$ $\operatorname{Diff}_{0}\left(S^{2} \times S^{2}\right)$ to be

$$
\left\{\psi_{0}\left(z_{1}, z_{2}\right)\right\}=\left(B \text {-sphere through } \varphi_{1}\left(z_{1}\right)\right) \cap \cap\left(A \text {-sphere through } \varphi_{2}\left(z_{2}\right)\right) \cap
$$

The picture is as in fig. 1.
So ψ_{0} is a diffeomorphism, but it might not be symplectic, so we have to fix it. In particular we will fix this using the Moser trick.

Lemma 1. $(\omega \oplus \omega) \wedge \psi_{0}^{*}(\omega \oplus \omega)>0$.

Figure 1. The picture of our diffeomorphism ψ_{0}.
Proof. Given $\left(q_{1}, q_{2}\right) \in S^{2} \times S^{2}$, choose symplectic bases $\left(v_{1}, w_{1}\right)$ for $T_{q_{1}} S^{2}$, and $\left(v_{2}, w_{2}\right)$ for $T_{q_{2}} S^{2}$.

$$
\begin{aligned}
{\left[(\omega \oplus \omega) \wedge \psi_{0}^{*}(\omega \oplus \omega)\right]\left(v_{1}, w_{1}, v_{2}, w_{2}\right) } & =\psi_{0}^{*}(\omega \oplus \omega)\left(v_{1}, w_{1}\right)+\psi_{0}^{*}(\omega \oplus \omega)\left(v_{2}, w_{2}\right) \\
& =(\omega \oplus \omega)\left(\left(\psi_{1}\right)_{*} v_{1},\left(\psi_{0}\right)_{0} w_{1}\right) \\
& +(\omega \oplus \omega)\left(\left(\psi_{1}\right)_{*} v_{2},\left(\psi_{0}\right)_{0} w_{2}\right)>0
\end{aligned}
$$

Now define

$$
\omega_{t}=t(\omega \oplus \omega)+(1-t) \psi_{0}^{*}(\omega \oplus \omega)
$$

Then

$$
\omega_{t} \wedge \omega_{t}=t^{2}+2 t(1-t)+(1-t)^{2}>0
$$

which implies ω_{t} is symplectic for $t \in[0,1]$.
By the Moser trick there is a canonical isotopy $\left\{\psi_{t}\right\}_{t \in[0,1]}$ from ψ_{0} to ψ_{1} with

$$
\psi_{1}^{*}(\omega \oplus \omega)=\omega \oplus \omega
$$

Define $\psi=\psi_{1}$.
Now define

$$
g: \operatorname{Symp}_{0}\left(S^{2} \times S^{2}\right) \rightarrow X
$$

by

$$
g(\psi)=\left(\psi_{*}\left(J_{0} \oplus J_{0}\right), \varphi_{1}, \varphi_{2} \text { given by } \psi\right)
$$

Now if we look at the construction we have $f \circ g=\operatorname{id}_{\text {Symp }_{0}}$, and then we have a homotopy equivalence $g \circ f \sim_{\text {hom }} \operatorname{id}_{X}$.
Remark 1. The theorem is false if the two symplectic forms have different areas.
Example 1. Consider $\left(S^{2} \times S^{2}, \omega_{1} \oplus \omega_{2}\right)$, where ω_{1} has area 1 and ω_{2} has area $1+\epsilon$. In this case Gromov compactness can fail when constructing the A and B sphere.

Figure 2. Bubbling in the case when the two spheres do not have equal areas.

For example, in $H_{2}\left(S^{2} \times S^{2}\right)$, we have

$$
(0,1)=(1,0)+(-1,1) .
$$

The LHS has area $1+\epsilon$, the first term on the RHS has area 1 , and the second term on the RHS has area ϵ, so we could have bubbling as in fig. 2 .

Sometimes bubbling can be ruled out with an index argument. For example when we have $A=(-1,1)$,

$$
\text { ind }=\underbrace{(n-3) \chi}_{=-2}+2 \underbrace{c_{1}(A)}_{=0} \text {. }
$$

We can actually quantify this. Consider

$$
\Sigma=\{J \in \mathcal{J} \mid \exists J-\text { holomorphic curve in the class }(-1,1)\} .
$$

This is a codimension 2 "subvariety" of \mathcal{J}. Map

$$
\Phi: \pi_{1}\left(\operatorname{Symp}_{0}\left(S^{2} \times S^{2}, \omega_{1} \oplus \omega_{2}\right)\right) \rightarrow \mathbb{Z}
$$

by taking $\Phi\left(\psi_{t}\right)$ to be the linking number of $\left(\psi_{t}\right)_{*}\left(J_{0} \oplus J_{0}\right)$ with Σ. It is known that this map is nontrivial in explicit examples. So we get a different answer in the case of different areas.

This is extensively studied by McDuff, Abreu, and others.

1. Recognition of \mathbb{R}^{4}

Recall the theorem said the following. Let $\left(X^{4}, \omega\right)$ be a noncompact symplectic 4-manifold with $K \subset X$ compact and $H_{*}(X) \simeq H_{*}(\mathrm{pt})$. Let $L \subset \mathbb{R}^{4}$ compact. Then the existence of

$$
\varphi:(X \backslash K, \omega) \xrightarrow{\simeq}\left(\mathbb{R}^{4} \backslash L, \omega_{\mathrm{std}}\right)
$$

implies there exists a symplectomorphism

$$
(X, \omega) \xrightarrow{\simeq}\left(\mathbb{R}^{4}, \omega_{\mathrm{std}}\right)
$$

which agrees with φ outside a compact set $K^{\prime} \supset K$.
Proof. By enlarging K, we can assume WLOG that

$$
L=D^{2} \times D^{2}
$$

where these D^{2} s have the same area since L is the complement of the image of the complement of K. The point is that inside K anything could be happening,
but L is just a sort of rectangle. We can complete ($L, \omega_{\text {std }}$) to $\left(S^{2} \times S^{2}, \omega_{1} \oplus \omega_{2}\right)$ where the ω_{i} have the same area by adding a bit, which we call Θ. Likewise we can complete (K, ω) to $(\bar{K}, \bar{\omega})$. Since X is homologically trivial,

$$
H_{*}(\bar{K}) \simeq H_{*}\left(S^{2} \times S^{2}\right)
$$

and

$$
[\bar{\omega}]=(a, a) \in H^{2}(\bar{K} ; \mathbb{R}) .
$$

Fix an $\bar{\omega}$-compatible acs \bar{J} on \bar{K}. A generalization of the proposition from before shows that \bar{K} has foliations by \bar{K}-holomorphic spheres in the class $(1,0)$ (A-sphere) and in the class $(0,1)(B$-spheres). To prove this, assume \bar{J} is a product acs on Θ. As in the proof of the proposition

$$
m_{0,1}^{\bar{J}}(\bar{J},(1,0)) \quad m_{0,1}^{\bar{J}}(\bar{J},(0,1))
$$

are compact and consist of embedded holomorphic spheres which give a foliation of some subset of \bar{K}. Since we have such spheres in Θ, the evaluation maps from these moduli spaces to \bar{K} have degree 1 , and we get foliations of all of \bar{K}.

As before, we get a symplectomorphism $\bar{K} \rightarrow S^{2} \times S^{2}$ by using the A-spheres and B-spheres to define a diffeomorphism using the Moser trick. With more work, we can get this symplectomorphism to be the identity on Θ. Can remove boundaries and extend to get a symplectomorphism $X \simeq \mathbb{R}^{4}$.

The idea is that these foliations sort of look like coordinates.

