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Recall last time we had the following:

Proposition 1. Let J be any compatible acs on
(
S2 × S2, ω ⊕ ω

)
. Then S2×S2 has

a foliation by J-holomorphic sphere in the class (1, 0) ∈ H2

(
S2 × S2

)
(A-spheres)

and a foliation by J-holomorphic spheres in the class (0, 1) ∈ H2

(
S2 × S2

)
(B-

sphere). Each A-sphere transversely intersects each B-sphere at a single point.

We introduced this to prove recognition of R4, but we will first use it to show
another theorem of Gromov:

Theorem 1 (Gromov). The inclusion

SO (3)× SO (3) ↪→ Symp0

(
S2 × S2, ω ⊕ ω

)
(where the symplectic forms ω have equal area, and Symp0 denotes the identity
component of the symplectomorphism group) is a homotopy equivalence.

Proof. Fix p ∈ S2. Let X be the set of triples:

X = {(J, ϕ1, ϕ2)}

where J is a compatible acs S2 × S2, and the ϕi are symplectomorphisms:

ϕ1 :S2 '−→ (A-sphere through p)

ϕ2 :S2 '−→ (B-sphere through p) .

Note that X is homotopy equivalent to SO (3)× SO (3).
Now we define

f : X → Symp0

(
S2 × S2

)
.

Given (J, ϕ1, ϕ2) ∈ X define ψ ∈ Symp0

(
S2 × S2

)
as follows. First define ψ0 ∈

Diff0

(
S2 × S2

)
to be

{ψ0 (z1, z2)} = (B-sphere through ϕ1 (z1)) ∩ ∩ (A-sphere through ϕ2 (z2))∩

The picture is as in fig. 1.
So ψ0 is a diffeomorphism, but it might not be symplectic, so we have to fix it.

In particular we will fix this using the Moser trick.

Lemma 1. (ω ⊕ ω) ∧ ψ∗0 (ω ⊕ ω) > 0.
1



2 LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

(p, p)
ϕ1 (z1)

ϕ2 (z2)
ψ0 (z1, z2)

Figure 1. The picture of our diffeomorphism ψ0.

Proof. Given (q1, q2) ∈ S2 × S2, choose symplectic bases (v1, w1) for Tq1S
2, and

(v2, w2) for Tq2S
2.

[(ω ⊕ ω) ∧ ψ∗0 (ω ⊕ ω)] (v1, w1, v2, w2) = ψ∗0 (ω ⊕ ω) (v1, w1) + ψ∗0 (ω ⊕ ω) (v2, w2)

= (ω ⊕ ω) ((ψ1)∗ v1, (ψ0)0 w1)

+ (ω ⊕ ω) ((ψ1)∗ v2, (ψ0)0 w2) > 0

�

Now define
ωt = t (ω ⊕ ω) + (1− t)ψ∗0 (ω ⊕ ω) .

Then
ωt ∧ ωt = t2 + 2t (1− t) + (1− t)2

> 0

which implies ωt is symplectic for t ∈ [0, 1].
By the Moser trick there is a canonical isotopy {ψt}t∈[0,1] from ψ0 to ψ1 with

ψ∗1 (ω ⊕ ω) = ω ⊕ ω .

Define ψ = ψ1.
Now define

g : Symp0

(
S2 × S2

)
→ X

by
g (ψ) = (ψ∗ (J0 ⊕ J0) , ϕ1, ϕ2 given by ψ) .

Now if we look at the construction we have f ◦ g = idSymp0
, and then we have a

homotopy equivalence g ◦ f ∼hom idX . �

Remark 1. The theorem is false if the two symplectic forms have different areas.

Example 1. Consider
(
S2 × S2, ω1 ⊕ ω2

)
, where ω1 has area 1 and ω2 has area

1 + ε. In this case Gromov compactness can fail when constructing the A and B
sphere.
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(1, 0) (−1, 1)

Figure 2. Bubbling in the case when the two spheres do not have
equal areas.

For example, in H2

(
S2 × S2

)
, we have

(0, 1) = (1, 0) + (−1, 1) .

The LHS has area 1 + ε, the first term on the RHS has area 1, and the second term
on the RHS has area ε, so we could have bubbling as in fig. 2.

Sometimes bubbling can be ruled out with an index argument. For example
when we have A = (−1, 1),

ind = (n− 3)χ︸ ︷︷ ︸
=−2

+2 c1 (A)︸ ︷︷ ︸
=0

.

We can actually quantify this. Consider

Σ = {J ∈ J | ∃J − holomorphic curve in the class (−1, 1)} .
This is a codimension 2 “subvariety” of J . Map

Φ : π1

(
Symp0

(
S2 × S2, ω1 ⊕ ω2

))
→ Z

by taking Φ (ψt) to be the linking number of (ψt)∗ (J0 ⊕ J0) with Σ. It is known
that this map is nontrivial in explicit examples. So we get a different answer in the
case of different areas.

This is extensively studied by McDuff, Abreu, and others.

1. Recognition of R4

Recall the theorem said the following. Let
(
X4, ω

)
be a noncompact symplectic

4-manifold with K ⊂ X compact and H∗ (X) ' H∗ (pt). Let L ⊂ R4 compact.
Then the existence of

ϕ : (X \K,ω)
'−→
(
R4 \ L, ωstd

)
implies there exists a symplectomorphism

(X,ω)
'−→
(
R4, ωstd

)
which agrees with ϕ outside a compact set K ′ ⊃ K.

Proof. By enlarging K, we can assume WLOG that

L = D2 ×D2

where these D2s have the same area since L is the complement of the image of
the complement of K. The point is that inside K anything could be happening,
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but L is just a sort of rectangle. We can complete (L, ωstd) to
(
S2 × S2, ω1 ⊕ ω2

)
where the ωi have the same area by adding a bit, which we call Θ. Likewise we can
complete (K,ω) to

(
K̄, ω̄

)
. Since X is homologically trivial,

H∗
(
K̄
)
' H∗

(
S2 × S2

)
and

[ω̄] = (a, a) ∈ H2
(
K̄;R

)
.

Fix an ω̄-compatible acs J̄ on K̄. A generalization of the proposition from before
shows that K̄ has foliations by K̄-holomorphic spheres in the class (1, 0) (A-sphere)
and in the class (0, 1) (B-spheres). To prove this, assume J̄ is a product acs on Θ.
As in the proof of the proposition

mJ̄
0,1

(
J̄ , (1, 0)

)
mJ̄

0,1

(
J̄ , (0, 1)

)
are compact and consist of embedded holomorphic spheres which give a foliation
of some subset of K̄. Since we have such spheres in Θ, the evaluation maps from
these moduli spaces to K̄ have degree 1, and we get foliations of all of K̄.

As before, we get a symplectomorphism K̄ → S2×S2 by using the A-spheres and
B-spheres to define a diffeomorphism using the Moser trick. With more work, we
can get this symplectomorphism to be the identity on Θ. Can remove boundaries
and extend to get a symplectomorphism X ' R4.

The idea is that these foliations sort of look like coordinates. �
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