LECTURE 19 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

Recall last time we had the following:

Proposition 1. Let J be any compatible acs on $(S^2 \times S^2, \omega \oplus \omega)$. Then $S^2 \times S^2$ has a foliation by J-holomorphic sphere in the class $(1,0) \in H_2(S^2 \times S^2)$ (A-spheres) and a foliation by J-holomorphic spheres in the class $(0,1) \in H_2(S^2 \times S^2)$ (Bsphere). Each A-sphere transversely intersects each B-sphere at a single point.

We introduced this to prove recognition of \mathbb{R}^4 , but we will first use it to show another theorem of Gromov:

Theorem 1 (Gromov). The inclusion

$$SO(3) \times SO(3) \hookrightarrow Symp_0 \left(S^2 \times S^2, \omega \oplus \omega \right)$$

(where the symplectic forms ω have equal area, and Symp_0 denotes the identity component of the symplectomorphism group) is a homotopy equivalence.

Proof. Fix $p \in S^2$. Let X be the set of triples:

$$X = \{(J, \varphi_1, \varphi_2)\}$$

where J is a compatible acs $S^2 \times S^2$, and the φ_i are symplectomorphisms:

$$\varphi_1 : S^2 \xrightarrow{\simeq} (A$$
-sphere through p)
 $\varphi_2 : S^2 \xrightarrow{\simeq} (B$ -sphere through p).

Note that X is homotopy equivalent to SO $(3) \times$ SO (3).

Now we define

$$f: X \to \operatorname{Symp}_0(S^2 \times S^2)$$
.

Given $(J, \varphi_1, \varphi_2) \in X$ define $\psi \in \text{Symp}_0(S^2 \times S^2)$ as follows. First define $\psi_0 \in \text{Diff}_0(S^2 \times S^2)$ to be

$$\{\psi_0(z_1, z_2)\} = (B$$
-sphere through $\varphi_1(z_1)) \cap \cap (A$ -sphere through $\varphi_2(z_2)) \cap$

The picture is as in fig. 1.

So ψ_0 is a diffeomorphism, but it might not be symplectic, so we have to fix it. In particular we will fix this using the Moser trick.

Lemma 1. $(\omega \oplus \omega) \wedge \psi_0^* (\omega \oplus \omega) > 0.$

FIGURE 1. The picture of our diffeomorphism ψ_0 .

Proof. Given $(q_1, q_2) \in S^2 \times S^2$, choose symplectic bases (v_1, w_1) for $T_{q_1}S^2$, and (v_2, w_2) for $T_{q_2}S^2$.

$$\begin{aligned} \left[(\omega \oplus \omega) \land \psi_0^* \left(\omega \oplus \omega \right) \right] (v_1, w_1, v_2, w_2) &= \psi_0^* \left(\omega \oplus \omega \right) (v_1, w_1) + \psi_0^* \left(\omega \oplus \omega \right) (v_2, w_2) \\ &= \left(\omega \oplus \omega \right) \left((\psi_1)_* v_1, (\psi_0)_0 w_1 \right) \\ &+ \left(\omega \oplus \omega \right) \left((\psi_1)_* v_2, (\psi_0)_0 w_2 \right) > 0 \end{aligned}$$

Now define

$$\omega_t = t \left(\omega \oplus \omega \right) + (1 - t) \psi_0^* \left(\omega \oplus \omega \right) \; .$$

Then

$$\omega_t \wedge \omega_t = t^2 + 2t (1 - t) + (1 - t)^2 > 0$$

which implies ω_t is symplectic for $t \in [0, 1]$.

By the Moser trick there is a canonical isotopy $\{\psi_t\}_{t\in[0,1]}$ from ψ_0 to ψ_1 with

$$\psi_1^*\left(\omega\oplus\omega\right)=\omega\oplus\omega$$

Define $\psi = \psi_1$.

Now define

$$g: \operatorname{Symp}_0\left(S^2 \times S^2\right) \to X$$

by

$$g(\psi) = (\psi_* (J_0 \oplus J_0), \varphi_1, \varphi_2 \text{ given by } \psi)$$

Now if we look at the construction we have $f \circ g = \mathrm{id}_{\mathrm{Symp}_0}$, and then we have a homotopy equivalence $g \circ f \sim_{\mathrm{hom}} \mathrm{id}_X$.

Remark 1. The theorem is false if the two symplectic forms have different areas.

Example 1. Consider $(S^2 \times S^2, \omega_1 \oplus \omega_2)$, where ω_1 has area 1 and ω_2 has area $1 + \epsilon$. In this case Gromov compactness can fail when constructing the A and B sphere.

FIGURE 2. Bubbling in the case when the two spheres do not have equal areas.

For example, in $H_2(S^2 \times S^2)$, we have

$$(0,1) = (1,0) + (-1,1)$$
.

The LHS has area $1 + \epsilon$, the first term on the RHS has area 1, and the second term on the RHS has area ϵ , so we could have bubbling as in fig. 2.

Sometimes bubbling can be ruled out with an index argument. For example when we have A = (-1, 1),

ind =
$$\underbrace{(n-3)\chi}_{=-2} + 2\underbrace{c_1(A)}_{=0}$$

We can actually quantify this. Consider

 $\Sigma = \{ J \in \mathcal{J} \mid \exists J - \text{holomorphic curve in the class } (-1, 1) \} .$

This is a codimension 2 "subvariety" of \mathcal{J} . Map

 $\Phi: \pi_1\left(\operatorname{Symp}_0\left(S^2 \times S^2, \omega_1 \oplus \omega_2\right)\right) \to \mathbb{Z}$

by taking $\Phi(\psi_t)$ to be the linking number of $(\psi_t)_* (J_0 \oplus J_0)$ with Σ . It is known that this map is nontrivial in explicit examples. So we get a different answer in the case of different areas.

This is extensively studied by McDuff, Abreu, and others.

1. Recognition of
$$\mathbb{R}^4$$

Recall the theorem said the following. Let (X^4, ω) be a noncompact symplectic 4-manifold with $K \subset X$ compact and $H_*(X) \simeq H_*(\text{pt})$. Let $L \subset \mathbb{R}^4$ compact. Then the existence of

$$\varphi: (X \setminus K, \omega) \xrightarrow{\simeq} (\mathbb{R}^4 \setminus L, \omega_{\text{std}})$$

implies there exists a symplectomorphism

 $(X,\omega) \xrightarrow{\simeq} (\mathbb{R}^4, \omega_{\mathrm{std}})$

which agrees with φ outside a compact set $K' \supset K$.

Proof. By enlarging K, we can assume WLOG that

$$L = D^2 \times D^2$$

where these D^2 s have the same area since L is the complement of the image of the complement of K. The point is that inside K anything could be happening,

3

but L is just a sort of rectangle. We can complete (L, ω_{std}) to $(S^2 \times S^2, \omega_1 \oplus \omega_2)$ where the ω_i have the same area by adding a bit, which we call Θ . Likewise we can complete (K, ω) to $(\bar{K}, \bar{\omega})$. Since X is homologically trivial,

$$H_*\left(\bar{K}\right) \simeq H_*\left(S^2 \times S^2\right)$$

and

$$[\bar{\omega}] = (a, a) \in H^2\left(\bar{K}; \mathbb{R}\right)$$
.

Fix an $\bar{\omega}$ -compatible acs \bar{J} on \bar{K} . A generalization of the proposition from before shows that \bar{K} has foliations by \bar{K} -holomorphic spheres in the class (1,0) (A-sphere) and in the class (0,1) (B-spheres). To prove this, assume \bar{J} is a product acs on Θ . As in the proof of the proposition

$$m_{0,1}^{J}\left(\bar{J},(1,0)\right) \qquad \qquad m_{0,1}^{J}\left(\bar{J},(0,1)\right)$$

are compact and consist of embedded holomorphic spheres which give a foliation of some subset of \bar{K} . Since we have such spheres in Θ , the evaluation maps from these moduli spaces to \bar{K} have degree 1, and we get foliations of all of \bar{K} .

As before, we get a symplectomorphism $\overline{K} \to S^2 \times S^2$ by using the A-spheres and B-spheres to define a diffeomorphism using the Moser trick. With more work, we can get this symplectomorphism to be the identity on Θ . Can remove boundaries and extend to get a symplectomorphism $X \simeq \mathbb{R}^4$.

The idea is that these foliations sort of look like coordinates.