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1. Morse theory

1.1. Topology on the compactified moduli space. The compactification of a
moduli space of flow lines is defined to be

m (p, q) =
∐
k≥1

p=p0 6=p1 6=... 6=pk=q

m (p0, p1)× . . .×m (pk−1, pk) .

Let {γk}k=1 be a sequence in m̃ (p, q). We say that the sequence {[γi]} in m (p, q)
converges to

([η1] , . . . , [ηk]) ∈ m (p0, p1)× . . .×m (pk−1, pk)

if there are si,j ∈ R with si,1 > si,2 > . . . > si,k such that

γi (si,j + ·)→ ηj

in C∞ on compact sets.

Exercise 1. Let X be a compact manifold. Any sequence in m (p, q) has a subse-

quence which converges in m (p, q).

1.2. Invariance. So we know the Morse homology is equivalent to the usual ho-
mology, and we sketched why this is true. But given X, how can we prove that
the Morse homology H∗ (X, f, g) does not depend on the Morse-Smale pair (f, g)?
For example, if some aliens came up with a parallel version of mathematics and
invented Morse homology before algebraic topology, how might they prove that
this is invariant?1 Let (f0, g0) and (f1, g1) be two Morse-Smale pairs. The space
of smooth functions f : X → R and metrics g on X are both contractible. Let
{(ft, gt)}t∈[0,1] be a smooth path from (f0, g0) to (f1, g1).

Remark 1. We cannot expect that (ft, gt) is Morse-Smale for all t.

We do want the path {(ft, gt)} to be suitable generic.

Approach 1: bifurcation analysis. There are only finitely many t for which (ft, gt)
is not Morse-Smale. So we can study how Morse complex changes and check that
the homology stays the same. We can do this, and it’s sort of interesting, but there
is another approach which is better for some purposes.

1Professor Hutchings says one can find alien mathematics quite easily just by going to the
Physics department. After all, good aliens are supposed to behave in a consistent way which isn’t

at all understandable, and that’s exactly what they do.
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0 1

β (t)

Approach 2: continuation maps. This approach is due to Floer. Define a vector
field V on [0, 1]t ×X by

V (t, x) = β (t)
∂

∂t
+∇gtft .

The idea is that β looks like section 1.2. Given p0 ∈ crit (f0) and p1 ∈ crit (f1)
define

mV (p1, p0) =

{
u : R→ [0, 1]×X |u′ (s) = V (u (s)) , lims→+∞ u (s) = (1, p1)

lims→−∞ u (s) = (0, p0)

}
modulo reparameterization. Generically,

dimmV (p1, p0) = ind (p1)− ind (p0)

where

“ ind ” (0, p0) = ind (p0) “ ind ” (1, p1) = ind (p1) + 1 .

Define
ψ : CMorse

∗ (X, f1, g1)→ CMorse
∗ (X, f0, g0)

by

ϕ (p1) =
∑

p0∈crit(f0)
ind(p0)=ind(p1)

[
#mV (p1, p0)

]
p0

where # denotes the count in Z with signs (or in Z/2Z).

Lemma 1. ϕ is a chain map ∂0 ◦ϕ = ψ ◦∂1 where ∂i is the differential for (fi, gi).

Proof sketch. Similarly to the proof that ∂2 = 0, if ind (p1) − ind (p0) = 1, then

mV (p1, p0) has a compactification mV (p1, p0) is a compact 1-manifold with bound-
ary. The idea is that we want to think about the different ways that these flow-lines
can break. We have that:

(1) ∂mV (p1, p0) =
∐

p′0∈crit(f0)
ind(p′0)=ind(p1)

mV (p1, p
′
0)×m (p′0, p0)

q
∐

p′1∈crit(f1)
ind(p′1)=ind(p0)

m (p1, p
′
1)×mV (p′1, p0)
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0 = #∂mV (p1, p0) =
∑
p′0

#mV (p1, p
′
0) #m (p′0, p0) +

∑
p′1

#m (p1, p
′
1) #mV (p′1, p0)

=
∑
p′0

〈ϕp1, p′0〉 〈∂0p′0, p0〉+
∑
p′1

〈∂p1, p′1〉 〈ϕp′1, p0〉

= 〈∂0ϕp1, p0〉+ 〈ϕ∂1p1, p0〉
with Z/2Z coefficients. �

Lemma 2. The continuation map

HMorse
∗ (f1, g1)→ HMorse

∗ (f0, g0)

does not depend on the choice of path {(ft, gt)}.

Proof. Let {(f0,t, g0,t)} and {(f1,t, g1,t)} be two generic paths. The space of such
paths is contractible, so we can choose a generic homotopy

{(fτ,t, fτ,t)}τ∈[0,1],t∈[0,1]
between them, i.e. for all τ we have

(fτ,0, gτ,0) = (f0, g0) (fτ,1, gτ,1) = (f1, g1) .

Define a vector field W on

[0, 1]τ × [0, 1]t ×X
by

W (τ, t, x) = β (t)
∂

∂t
+ gradgτ,t fτ,t

so the flow of W preserves τ and agrees with Vτ . Now given p0 ∈ crit (f0) and
p1 ∈ crit (f1), we can define

mW (p1, p0)

to consist of the flow lines of W from (τ, 0, p0) to (τ, 1, p1) for some τ modulo
reparameterization. Generically,

dimmW (p1, p0) = ind (p1)− ind (p0) + 1 .

Now define
K : CMorse

∗ (f1, g1)→ CMorse
∗+1 (f0, g0)

by

K (p1) =
∑

ind(p0)=ind(p1)+1

[
#mW (p1, p0)

]
p0

and the claim is that this is a chain homotopy, i.e. ∂0K + K∂1 = ϕ0 − ϕ1. The
idea of the proof is to suppose ind (p0) = ind (p1), and then mW (p1, p0) has a
compactification

mW (p1, p0)

whose boundary points count

〈∂0Kp1, p0〉 〈K∂1p1, p0〉 〈ϕ0p1, p0〉 〈ϕ1p1, p0〉 .
The point is that breaking gives us ∂0K, K∂1, and then sending τ → 0 gives us ϕ0,
and τ → 1 gives us ϕ1. So ϕ0 and ϕ1 are chain homotopic and induce the same
map on Morse homology. �

Now we want to show that the continuation map HMorse
∗ (f, g) → HMorse

∗ (f, g)
is the identity.



4 LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

Proof. Take the constant path

Exercise 2. The vector field V is Morse-Smale and if ind (p0) = ind (p1) then

mV (p1, p0) =

{
pt p0 = p1

∅ p0 6= p1
.

[The idea is to show that the flow lines of V project to flow-lines of f .]

Therefore ϕ : HMorse
∗ (f, g) 	 is the identity. �

The last step is the following. If (f0, g0), (f1, g1), and (f2, g2) are three Morse-
Smale pairs, then we have the commutative triangle

H∗ (f2, g2) H∗ (f1, g1) H∗ (f0, g0)

and then we have a chain homotopy between these chain homotopies.
Now if we believe this, we can take (f2, g2) = (f0, g0) to show that the contin-

uation map from H∗ (f0, g0) → H∗ (f1, g1) is the inverse map of the continuation
map in the other direction.
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