LECTURE 23
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS
NOTES: JACKSON VAN DYKE

1. Floer theory for a Hamiltonian symplectomorphism

Let (M, ω) be a closed symplectic manifold which is symplectically aspherical, i.e. $c_{1},[\omega]$ vanish on $\pi_{2}(M)$. Choose generic $\left\{J_{t}\right\}$ with $J_{t+1}=J_{t}$. Then we have $H_{t}: M \rightarrow \mathbb{R}, H_{t+1}=H_{t}$. Assume all of the fixed points of φ_{1} are nondegenerate. Then consider

$$
\mathcal{P}_{0}=\left\{\gamma: S^{1}=\mathbb{R} / \mathbb{Z} \rightarrow M \mid \gamma^{\prime}(t)=X_{H_{t}}(\gamma(t)), \gamma \text { contractible }\right\} \hookrightarrow \operatorname{Fix}\left(\varphi_{1}\right)
$$

Now we have $\mathrm{CF}_{*}(H, J)$ generated over $\mathbb{Z} / 2 \mathbb{Z}$ (or \mathbb{Z}) by $\gamma \in \mathcal{P}_{0}$ with $\mathrm{cz}(\gamma)=*$. For $\gamma_{ \pm} \in \mathcal{P}_{0}$ we have the moduli space

$$
m^{J}\left(\gamma_{+}, \gamma_{-}\right)=\left\{u: \mathbb{R} \times S^{1} \rightarrow M \mid \partial_{s} u+J_{t}\left(\partial_{t} u-X_{H_{t}}\right)=0, \lim _{s \rightarrow \pm \infty} \gamma_{\omega}(t)\right\} / \mathbb{R}
$$

Notice that

$$
\operatorname{dim} m^{J}\left(\gamma_{+}, \gamma_{-}\right)=\mathrm{cz}\left(\gamma_{+}\right)-\mathrm{cz}\left(\gamma_{-}\right)-1
$$

Now the differential is given by:

$$
\partial \gamma_{+}=\sum_{c z\left(\gamma_{-}\right)=\mathrm{cz}\left(\gamma_{+}\right)-1} \# m^{J}\left(\gamma_{+}, \gamma_{-}\right) \cdot \gamma_{-}
$$

2. The Conley-Zehnder index

This is supposed to be an analogue of the Morse index. If $u \in \tilde{m}^{J}\left(\gamma_{+}, \gamma_{-}\right)$, then $T_{u} \tilde{m}$ is the kernel of a linearized operator

$$
D_{u}: L_{1}^{2}\left(u^{*} T M\right) \rightarrow L^{2}\left(u^{*} T M\right)
$$

If we choose a trivialization of $u^{*} T M$ which converges to trivializations of $u^{*} T M$ which "converge to" trivializations of $\gamma_{ \pm}^{*} T M$ as $s \rightarrow \pm \infty$, then D_{u} has the form

$$
D_{u} \xi=\partial_{s} \xi+J_{0} \partial_{t} \xi+A(s, t) \xi
$$

where

$$
\lim _{s \rightarrow \pm \infty} A(s, t)=A_{ \pm}(t)
$$

The point is that $J_{0} \partial_{s}+A_{ \pm}(t)$ is analogous to the negative Hessian in Morse theory.
The Morse theory analogue is as follows. A gradient flow line is a map $\eta: \mathbb{R} \rightarrow X$ such that

$$
\partial_{S} \eta-\nabla f(\eta(s))=0
$$

Then the linearized operator is

$$
D_{\eta}: L_{1}^{2}\left(\eta^{*} T X\right) \rightarrow L^{2}\left(\eta^{*} T X\right)
$$

Date: April 18, 2019.

Figure 1. The black dots are some eigenvalues for some finite s, and the spectral flow is 3 .

In a trivialization

$$
D_{\eta} \xi=\partial_{s} \xi+A(s) \xi
$$

and

$$
\lim _{s \rightarrow \pm \infty} A(s)=-H\left(f, p_{ \pm}\right)
$$

There is some slightly bad news in the Floer theory case. The operator $J_{0} \partial_{t}+$ $A_{ \pm}(t)$ has ∞ many positive and negative eigenvalues. So we can't do the exact same thing as the Morse theory setting.
2.1. Spectral flow "principle". Let H be a Hilbert space. Consider a 1-parameter family of operators $A_{s}: H \rightarrow H$ where

$$
" \lim _{s \rightarrow \infty} A_{s} "=A_{ \pm}
$$

where $A_{ \pm}$is self-adjoint and $0 \notin \operatorname{Spec}\left(A_{ \pm}\right)$. Under suitable technical hypotheses one defines the spectral flow $\operatorname{sf}\left(\left\{A_{s}\right\}\right)$ be the "number of eigenvalues with real part crossing from negative to positive as s goes from $-\infty$ to $+\infty$ minus the number of eigenvalues that cross from positive to negative."

Let's assume all of the eigenvalues are real and draw a picture.
Theorem 1. Under the appropriate technical hypotheses, the operator

$$
D=\partial_{s}+A_{s}: L_{2}^{2}(\mathbb{R}, H) \rightarrow L^{2}(\mathbb{R}, H)
$$

is Fredholm, and ind $(D)=s f\left(\left\{A_{s}\right\}\right)$.
Example 1 (Morse theory). For $\eta: \mathbb{R} \rightarrow X$ a flow line with

$$
\lim _{s \rightarrow \pm \infty} \eta(s)=p_{ \pm}
$$

then we have

$$
D_{\eta}=\partial_{s}+A_{d}
$$

where the $\lim _{s \rightarrow \pm \infty}$ is $-H\left(f, p_{ \pm}\right)$. In this case the theorem implies that

$$
\operatorname{ind}\left(D_{\eta}\right)=\operatorname{sf}\left(\left\{A_{s}\right\}\right)
$$

is the number of positive eigenvalues of $-H\left(f, p_{+}\right)$minus the number of positive eigenvalues of $-H\left(f, p_{-}\right)$which is is the number of negative eigenvalues of $H\left(f, p_{+}\right)$ minus the number of negative eigenvalues of $H\left(f, p_{-}\right)$which is the difference of the indices as we should expect.

In the Floer theory case we have

$$
D_{u}=\partial_{s}+J_{0} \partial_{t} A(s, t)
$$

and the goal is to define the Conley-Zehnder index cz $\left(\gamma_{ \pm}\right)$such that

$$
\operatorname{sf}\left(\left\{J_{0} \partial_{t}+A(s, t)\right\}_{s}\right)=\mathrm{cz}\left(\gamma_{+}\right)-\mathrm{cz}\left(\gamma_{-}\right) .
$$

Let $\left\{\psi_{t}\right\}_{t \in[0,1]}$ be a family of $2 n \times 2 n$ symplectic matrices with $\psi_{0}=1$ and $1 \notin \operatorname{Spec}\left(\psi_{1}\right)$. Define cz $\left(\left\{\psi_{+}\right\}\right) \in \mathbb{Z}$ as follows. The Maslov cycle is

$$
\Lambda=\{A \in \operatorname{Sp}(2 n) \mid \operatorname{det}(A-1)=0\}
$$

This is a codimension 1 subvariety of $\operatorname{Sp}(2 n)$.
Fact 1. - Λ has a canonical coorientation.

- $H_{1}(\operatorname{Sp}(2 n)) \simeq \mathbb{Z}$.
- $[\Lambda]=2 \cdot$ generator.

Now the idea is that ψ_{t} is some path in $\operatorname{Sp}(2 n)$, and then $\mathrm{cz}\left(\left\{\psi_{t}\right\}\right)$ counts the intersections of the path ψ_{t} with the Maslov cycle. The issue is that ψ_{t} necessarily starts life on Λ, and in particular at a very singular point of Λ. So we need to fix this.
Definition 1. Let

$$
\rho_{t}=\left(\begin{array}{cc}
\underbrace{e^{t}}_{x_{1}} & \begin{array}{c}
0 \\
0
\end{array} \underbrace{e^{t}}_{y_{1}}
\end{array}\right) \oplus \ldots \oplus\left(\begin{array}{cc}
e^{t} & 0 \\
0 & \underbrace{e^{-t}}_{y_{n}}
\end{array}\right)
$$

. Declare that cz $\left(\left\{\rho_{t}\right\}\right)=0$. Now given $\left\{\psi_{t}\right\}$ let $\left\{\eta_{t}\right\}$ be obtained by concatenating the reverse of $\left\{\rho_{t}\right\}$ with $\left\{\psi_{t}\right\}$, and perturbing to be transverse to Λ. Define cz to be the signed count:

$$
\mathrm{cz}\left(\left\{\psi_{t}\right\}\right)=\#\left(\left\{\eta_{t}\right\} \cap \Lambda\right)
$$

Example 2. Let $n=1$. In this case $\operatorname{Sp}(2)=S^{1} \times D^{2}$. The Maslov cycle looks as in fig. 2.
2.2. General properties of the Conley-Zehnder index. If A is a symmetric matrix with $\|a\|<2 \pi$ then the following index is the signature of A :

$$
\operatorname{cz}\left(\left\{e^{t J_{0} A}\right\}_{t \in[0,1]}\right)=\sigma(A)
$$

This is the property that in the autonomous case of Floer theory $\mathrm{cz}=$ ind $-n$.
If $\varphi_{t}: S^{1} \rightarrow \mathrm{Sp}(2 n)$ is a loop with $\varphi_{0}=\mathrm{id}$, then

$$
\mathrm{cz}\left(\left\{\varphi_{t} \psi_{t}\right\}\right)-\mathrm{cz}\left(\left\{\psi_{t}\right\}\right)=2\left[\varphi_{t}\right] .
$$

This describes how cz is Floer theory depend on a choice of trivialization.

Figure 2. The entire group $\mathfrak{s p}$ (2) looks like this torus $S^{1} \times D^{2}$. Then Λ looks like this double banana. These matrices look like rotation matrices by an angle θ. The elements inside the top banana have eigenvalues $e^{\omega i \theta}$ and correspond to a positive rotation. The elements inside the top banana also have eigenvalues $e^{\omega i \theta}$ but correspond to a negative rotation. The path $\left\{\psi_{t}\right\}$ in red gets changed to the one in blue by $\{\rho\}_{t}$. This example has $\mathrm{cz}=1$. If it went along the bottom side instead it has $\mathrm{cz}=-1$.

