LECTURE 24 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

Professor Hutching's favorite color is ultraviolet.

Recall last time we saw that the index is the spectral flow. This means roughly that if we have

$$\partial_s + A(s) : L_1^2(\mathbb{R}, H) \to L^2(H)$$

with

$$\lim_{s \to \pm \infty} A\left(s\right)$$

self-adjoint, no kernel, then this implies that D is Fredholm and ind(D) is the spectral flow of $\{A_s\}$.

Example 1 (Simplest example). Let $H = \mathbb{R}$ be the Hilbert space. Then

$$\lim_{s \to \pm \infty} A\left(s\right) \neq 0$$

By the fundamental theorem of ODEs, given $\psi_0 \in \mathbb{R}$, there exists unique $\psi : \mathbb{R} \to \mathbb{R}$ with $\psi(0) = \psi_0$ and

$$\psi'(s) = -A(s)\psi(s) .$$

This means

dim ker
$$D = \begin{cases} 1 & A_+ > 0, A_- < 0 \\ 0 & o/w \end{cases}$$

Then the cokernel is

$$\operatorname{coker}(D) \simeq \ker(D^*) = \ker(-\partial_s + A(s))$$

so by the same argument

dim coker
$$D = \begin{cases} 1 & A_+ < 0, A_- > 0 \\ 0 & o/w \end{cases}$$
.

In the language of spectral flow, the first case is sf = +1, the second is sf = 0 or -1. In the third case sf = -1 and the last is sf = 0 or 1.

1. HAMILTONIAN FLOER THEORY

1.1. The index of this operator. Let $H: S^1 \times M \to \mathbb{R}$ and

$$\gamma_{\pm}: S^1 \to M \qquad \qquad \gamma'_{\pm}(t) = X_{H_t}(\gamma(t)) \ .$$

Then we have

$$\tilde{m}(\gamma_{+},\gamma_{-}) = \left\{ u : \mathbb{R} \times S^{1} \to M \,|\, \partial_{s}u + J_{t}\left(\partial_{t}u - X_{H_{t}}\right) = 0, \lim_{s \to \pm \infty} u\left(s,t\right) = \gamma_{\pm}\left(s,t\right) \right\}$$

Date: April 23, 2019.

We want to understand dim $\tilde{m}(\gamma_+, \gamma_-)$. Given u we have a linearized operator

$$D_u L : L_1^2 (u^* TM) \to L^2 (u^* TM)$$
.

We can choose a trivialization of u^*TM in which

$$D_u = \partial_s + J_0 \partial_t + A\left(s, t\right) \; .$$

Then we claim:

Claim 1.

and

$$\lim_{s \to \pm \infty} A\left(s, t\right) = A_{\pm}\left(t\right)$$

$$J_0\partial_t + A_{\pm}\left(t\right) = J_0\nabla_t^{\pm}$$

where ∇^{\pm} is the connection on γ_{\pm}^*TM is given by the derivative of the flow of X_{H_t} .

We now clarify what exactly we mean. We have a flow $\varphi_t: M \to M$ (for $t \in \mathbb{R}$) with $\varphi_0 = \mathrm{id}_M$ and

$$\frac{a}{dt}\varphi_t(p) = X_{H_t}(\varphi_t(p)) \quad .$$

If $\gamma: S^1 \to M, \, \gamma'(t) = X_{H_t}(\gamma(t))$ then $\varphi_t(\gamma(0)) = \gamma(t)$. Then we have a map
 $d\varphi_t: T_{\gamma(0)}M \to T_{\gamma(t)}M$

which we can think of as parallel transport, i.e. we get a connection ∇ on γ^*TM . So for every 1-periodic orbit we get this connection.

In particular, ker $(J_0 \nabla_t^{\pm}) \neq 0$ iff there exists a nonzero section η of $\gamma_{\pm}^* TM$ with $\nabla_t \eta = 0$, which is true iff there exists a nonzero vector $V \in T_{\gamma^{\pm}(0)}M$ with $d\varphi_1(V) = V$. This is equivalent to $1 \in \text{Spec}(d\varphi_1 : T_{\gamma_{\pm}(0)}M \odot)$ which is equivalent to the fixed point $\gamma_{\pm}(0)$ of φ_1 being degenerate. This means that if the fixed points of φ_1 are nondegenerate, then the operators $J_0 \nabla_t^{\pm}$ have kernel 0.

Note also that $A_{\pm}(t)$ is symmetric, ¹ so $J_0\partial_t + A_{\pm}(t)$ is self-adjoint, so

$$\operatorname{ind}\left(D_{u}\right) = \operatorname{sf}\left(\left\{J_{0}\partial_{t} + A\left(s,t\right)\right\}_{s\in\mathbb{R}}\right)$$

Lemma 1. Let $\{\psi_t\}_{t\in[0,1]}$ be a family of $2n \times 2n$ matrices with ψ_0 symplectic. Then ψ_t is symplectic for all t iff A_t is symmetric for all t such that $\psi'_t = J_0 A_t \psi_t$.

Proof. ψ_t is symplectic iff $\psi_t^T J_0 \psi_t = J_0$. Now we take the derivative to get

$$0 = (\psi_t')^T J_0 \psi_t + \psi_t^T J_0 + \psi_t'$$

= $\psi_t^T A_t^T (-J_0) J_0 \psi_t + \psi_t^T J_0 J_0 A_t \psi_t'$
= $A_t^T - A_t = 0$.

Define ψ_t^{ω} by $\psi_0^{\pm} = \text{id and}$

$$\frac{d}{dt}\psi_t^{\pm} = J_0 A_t^{\pm} \psi_t^{\pm}$$

Then the matrix ψ_t^{\pm} is symplectic because by the previous claim, it is the parallel transport map $T_{\gamma_{\pm}(0)}M \to T_{\gamma_{\pm}(t)}M$. This implies $A_t \pm$ is symmetric.

¹We prove this below.

Proposition 1.

$$\operatorname{ind}\left(\partial_{s} + J_{0}\partial_{t} + A\left(s,t\right)\right) = \operatorname{cz}\left(\left\{\psi_{t}^{+}\right\}\right) - \operatorname{cz}\left(\left\{\psi_{t}^{-}\right\}\right)$$

Proof. Since the index of a Fredholm operator is invariant under homotopy of Fredholm operators, WLOG A(s,t) is symmetric for all s, t not just as $s \to \pm \infty$. Now define $\psi_{s,t}$ ($s \in \mathbb{R}$ and $t \in [0,1]$) by

$$\frac{\partial}{\partial t}\psi_{s,t} = A\left(s,t\right)\psi_{s,t} \ .$$

then since A(s,t) is symmetric, the $\psi_{s,t}$ are symplectic.

Claim 2. For fixed s, $\ker (J_0 \partial_t + A(s, t)) \neq 0$ iff $1 \in \text{Spec}(\psi_{s,1})$.

Proof. There exists nonzero $\eta \in \ker (J_0 \partial_t + A(s, t))$ iff there exists nonzero $\eta : S^1 \to \mathbb{R}^{2n}$ with $(J_0 \partial_t + A(s, t)) \eta = 0$, or equivalently

$$\partial_t \eta = J_0 A\left(s, t\right) \eta \; .$$

This is equivalent to there existing nonzero $V \in \mathbb{R}^{2n}$ with $\psi_{s,1}(V) = V$.

One can further show that the spectral flow of this family of operators

$$\{J_0\partial_t + A(s,t)\}_{s\in\mathbb{R}}$$

is the algebraic intersection number of $\{\psi_{s,t}\}_{s\in\mathbb{R}}$ with the Maslov cycle Λ . The point is that we have a homotopy $\{\psi_t^+\} \sim \{\psi_t^-\} * \{\psi_{s,1}\}$ where * denotes concatenation. The idea is that we have an infinite rectangle of height 1 where the bottom edge is just the identity, the top is $\psi_{s,1}$, and the sides are ψ_t^- and ψ_t^+ respectively. Then going along the right side is the same as going along all three of the others. This implies that

$$\operatorname{cz}\left(\left\{\psi_t^+\right\}\right) = \operatorname{cz}\left(\left\{\psi_t^-\right\}\right) + \underbrace{\#\left\{\psi_{s,1}\right\} \cap \Lambda}_{\operatorname{ind}(D)} .$$

Assume all fixed points of φ are nondegenerate. In the Floer theory setup, suppose $\gamma: S^1 \to M$ satisfies $\gamma' = X_{H_t} \circ \gamma_1$.

Let τ be a symplectic trivialization of γ^*TM . Define the Conley-Zehnder index $\operatorname{cz}_{\tau}(\gamma) \in \mathbb{Z}$ as follows. Define a path of symplectic matrices ψ_t by $\psi_0 = \operatorname{id}, 1 \notin \operatorname{Spec}(\psi_1)$. Then we have

,

$$\begin{array}{cccc} T_{\gamma(0)}M & \xrightarrow{a\varphi_t} & T_{\gamma(t)}M \\ & & \downarrow^{\tau} & \downarrow^{\tau} \\ \mathbb{R}^{2n} & & \overset{\psi_t}{\longrightarrow} & \mathbb{R}^{2n} \end{array}$$

and we have

$$cz_{\tau}(\gamma) = cz(\{\psi_t\}).$$

Remark 1. $cz_{\tau}(\gamma)$ is invariant under homotopy of τ . The collection of homotopy classes of symplectic trivializations of γ^*TM is an affine space over \mathbb{Z} . Shifting τ by 1 shift cz by ± 2 .

Let $u \in \tilde{m}(\gamma_+, \gamma_-)$. Let τ_+, τ_- be trivializations of $\gamma_+^*TM, \gamma_-^*TM$. Suppose τ_+ and τ_- extend to trivializations of u^*TM . Then

$$\operatorname{ind} (D_u) = \operatorname{cz}_{\tau_+} (\gamma_+) - \operatorname{cz}_{\tau_-} (\gamma_-)$$

If D_u is surjective, then $\tilde{m}(\gamma_+, \gamma_-)$ is a manifold near u of dimension ind (D_u) .

1.2. **Grading.** Let (M, ω) be a closed symplectic manifold. Assume (M, ω) is symplectically aspherical, i.e. ω and $c_1(TM)$ vanish on $\pi_2(M)$. So now we're given $H: S^1 \times M \to \mathbb{R}$ with φ_1 nondegenerate.

Let $\gamma : S^1 \to M$ be a 1-periodic contractible orbit with $\gamma' = X_{H_t} \circ \gamma$. Define $\operatorname{cz}(\gamma)$ as follows. Let $u : D^2 \to M$ with $u(e^{2\pi i t}) = \gamma(t)$, i.e. we choose a disk with boundary γ . Let τ be a trivialization of γ^*TM that extends over u^*TM . This is fine since every vector bundle over a disk is trivial. Now define $\operatorname{cz}(\gamma) = \operatorname{cz}_{\tau}(\gamma)$.

Claim 3. This is well-defined.

4

Proof. First of all this depends only on u since the set of trivializations is contractible. So let $u': D^2 \to M$ be another disk. Then τ extends over u iff τ extends over u'. So TM pulled back to the sphere formed by these two disks is trivial. \Box

So we now have that the Floer chain complex generated by contractible 1-periodic orbits. The grading of γ will be $cz(\gamma)$. If $u \in \tilde{m}(\gamma_+, \gamma_-)$ and if D_u us surjective then $\tilde{m}(\gamma_+, \gamma_-)$ is a manifold near u of dimension

$$\operatorname{cz}(\gamma_{+}) - \operatorname{cz}(\gamma_{-})$$
.

Next time we will explain a bit more about the definition of Floer homology, and we will compute it when H does not depend on t.