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Professor Hutching’s favorite color is ultraviolet.
Recall last time we saw that the index is the spectral flow. This means roughly
that if we have
s+ A(s): L1(R,H) — L* (H)
with
lim A(s)

s—+oo
self-adjoint, no kernel, then this implies that D is Fredholm and ind (D) is the
spectral flow of {4,}.

Example 1 (Simplest example). Let H = R be the Hilbert space. Then
Sggloo A(s)#0.
By the fundamental theorem of ODEs, given 1y € R, there exists unique ¢ : R — R
with 1 (0) = ¢y and
U (s) =—A(s)d(s) .
This means
1 AL >0,A_<0

dimker D =
0 o/w

Then the cokernel is
coker (D) ~ ker (D*) = ker (—0s + A (s))
so by the same argument

1 AL <0,A_>0

dim coker D =
0 o/w

In the language of spectral flow, the first case is sf = +1, the second is sf = 0 or
—1. In the third case sf = —1 and the last is sf = 0 or 1.

1. HAMILTONIAN FLOER THEORY
1.1. The index of this operator. Let H : S' x M — R and
ve: St =M Ve (t) = Xn, (v (1)) -

Then we have

m(fy+,'y_){u:RxSlﬁMaqurJt(atuXHt)O, Erin u(s,t) = v (s,t)} .
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We want to understand dimm (y4,v—). Given u we have a linearized operator
D,L: L? (uw*TM) — L? (u*TM) .
We can choose a trivialization of v*T'M in which
D, =05+ JoO¢ + A(s,t) .
Then we claim:

Claim 1.
lim A(s,t) = AL (t)

s—+oo
and
Jod + Ay (t) = JoVE
where V¥ is the connection on 5 T'M is given by the derivative of the flow of Xy,.
We now clarify what exactly we mean. We have a flow ¢; : M — M (for t € R)
with @9 = idy; and

%‘Pt (p) = X, (¢t () -

Ify:S'— M,~ (t) = X, (v(t)) then ¢ (v(0)) =~ (). Then we have a map
dpy : T,),(O)M — T'y(t)M

which we can think of as parallel transport, i.e. we get a connection V on v*T'M.
So for every 1-periodic orbit we get this connection.

In particular, ker (JOVti) # 0 iff there exists a nonzero section n of vi1TM
with Vyn = 0, which is true iff there exists a nonzero vector V' € T+ )M with
dpy (V) = V. This is equivalent to 1 € Spec (dgpl 2Ty oM O ) which is equivalent
to the fixed point v+ (0) of ¢1 being degenerate. This means that if the fixed points
of 1 are nondegenerate, then the operators Jovf have kernel 0.

Note also that A (t) is symmetric,! so Jo0; + A4 (t) is self-adjoint, so

ind (D) = sf ({Jo0; + A (s,t)},cr)

Lemma 1. Let {wt}te[o,l] be a family of 2n x 2n matrices with 1y symplectic. Then
Py is symplectic for all t iff A is symmetric for all t such that ¥, = JyAu;.

Proof. 1y is symplectic iff 9] Joib; = Jo. Now we take the derivative to get
0= ()" Jovr + vF Jo + ¢}

:MA; (—Jo) J()%'F%JOJOAIS}%

=AT — A, =0.
Define 4% by ¢F = id and

d
U = JATUE

Then the matrix wti is symplectic because by the previous claim, it is the parallel
transport map T, (yM — T, ;M. This implies A;=+ is symmetric.

Lwe prove this below.
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Proposition 1.
ind (95 + JoO; + A (s,t)) = cz ({v5 }) —cz ({vy }) .

Proof. Since the index of a Fredholm operator is invariant under homotopy of Fred-
holm operators, WLOG A (s,t) is symmetric for all s,¢ not just as s — to0o0. Now
define ¢5; (s € Rand t € [0, 1]) by

0
aws,t =A (57 t) ¢s,t .

then since A (s,t) is symmetric, the ¢, are symplectic.
Claim 2. For fixed s, ker (Jo9; + A (s,t)) # 0 iff 1 € Spec (¢5.1)-
Proof. There exists nonzero n € ker (Jyd; + A (s,t)) iff there exists nonzero 7 :
St — R?" with (Jod; + A (s,t))n = 0, or equivalently
O = JoA (s, t)n .
This is equivalent to there existing nonzero V € R*" with ¢, (V) = V. (]

One can further show that the spectral flow of this family of operators
{‘]Oat + A (57 t)}se]R

is the algebraic intersection number of {15}, With the Maslov cycle A. The point
is that we have a homotopy {wj } ~ {1#[ } * {1)s 1} where * denotes concatenation.
The idea is that we have an infinite rectangle of height 1 where the bottom edge is
just the identity, the top is 9,1, and the sides are 1, and 1);" respectively. Then
going along the right side is the same as going along all three of the others. This
implies that

oz ({9}) = ez ({wr }) + # {1 nA
—_————
ind(D)
|
Assume all fixed points of ¢ are nondegenerate. In the Floer theory setup,
suppose 7 : St — M satisfies v/ = Xp, 0 71.
Let 7 be a symplectic trivialization of v*T'M. Define the Conley-Zehnder index

cz; (7) € Z as follows. Define a path of symplectic matrices 1y by 1y = id, 1 &
Spec (¢91). Then we have

depy
TyoyM —— TypyM

and we have

27 (7) = ez ({$}) ] -

Remark 1. cz, () is invariant under homotopy of 7. The collection of homotopy
classes of symplectic trivializations of v*T'M is an affine space over Z. Shifting 7
by 1 shift cz by +2.
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Let w € m (v4,7-). Let 7, 7_ be trivializations of viTM, v* T M. Suppose 7
and 7_ extend to trivializations of u*T'M. Then

|ind (D) = czr, (v4) — ez (1))

If D, is surjective, then m (v4,v-) is a manifold near u of dimension ind (D,,).

1.2. Grading. Let (M,w) be a closed symplectic manifold. Assume (M,w) is
symplectically aspherical, i.e. w and ¢; (T'M') vanish on 79 (M). So now we'’re given
H:S'x M — R with ¢, nondegenerate.

Let v : S* — M be a l-periodic contractible orbit with 4/ = Xp, ov. Define
cz (v) as follows. Let u: D* — M with u (e*™) =~ (t), i.e. we choose a disk with
boundary . Let 7 be a trivialization of v*T'M that extends over v*T'M. This is
fine since every vector bundle over a disk is trivial. Now define cz () = cz, (7).

Claim 3. This is well-defined.

Proof. First of all this depends only on u since the set of trivializations is con-
tractible. So let v’ : D? — M be another disk. Then 7 extends over u iff 7 extends
over u'. So TM pulled back to the sphere formed by these two disks is trivial. O

So we now have that the Floer chain complex generated by contractible 1-periodic
orbits. The grading of v will be ¢z (y). If u € m (y4,7v-) and if D, us surjective
then m (y4,v-) is a manifold near u of dimension

et (ve) —ez(1-) .
Next time we will explain a bit more about the definition of Floer homology, and
we will compute it when H does not depend on t.
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