LECTURE 24
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS
NOTES: JACKSON VAN DYKE

Professor Hutching's favorite color is ultraviolet.
Recall last time we saw that the index is the spectral flow. This means roughly that if we have

$$
\partial_{s}+A(s): L_{1}^{2}(\mathbb{R}, H) \rightarrow L^{2}(H)
$$

with

$$
\lim _{s \rightarrow \pm \infty} A(s)
$$

self-adjoint, no kernel, then this implies that D is Fredholm and $\operatorname{ind}(D)$ is the spectral flow of $\left\{A_{s}\right\}$.
Example 1 (Simplest example). Let $H=\mathbb{R}$ be the Hilbert space. Then

$$
\lim _{s \rightarrow \pm \infty} A(s) \neq 0
$$

By the fundamental theorem of ODEs, given $\psi_{0} \in \mathbb{R}$, there exists unique $\psi: \mathbb{R} \rightarrow \mathbb{R}$ with $\psi(0)=\psi_{0}$ and

$$
\psi^{\prime}(s)=-A(s) \psi(s)
$$

This means

$$
\operatorname{dim} \operatorname{ker} D= \begin{cases}1 & A_{+}>0, A_{-}<0 \\ 0 & \text { o/w }\end{cases}
$$

Then the cokernel is

$$
\operatorname{coker}(D) \simeq \operatorname{ker}\left(D^{*}\right)=\operatorname{ker}\left(-\partial_{s}+A(s)\right)
$$

so by the same argument

$$
\operatorname{dim} \operatorname{coker} D= \begin{cases}1 & A_{+}<0, A_{-}>0 \\ 0 & \text { o/w }\end{cases}
$$

In the language of spectral flow, the first case is $\mathrm{sf}=+1$, the second is $\mathrm{sf}=0$ or -1 . In the third case $\mathrm{sf}=-1$ and the last is $\mathrm{sf}=0$ or 1 .

1. Hamiltonian Floer theory

1.1. The index of this operator. Let $H: S^{1} \times M \rightarrow \mathbb{R}$ and

$$
\gamma_{ \pm}: S^{1} \rightarrow M \quad \quad \gamma_{ \pm}^{\prime}(t)=X_{H_{t}}(\gamma(t))
$$

Then we have
$\tilde{m}\left(\gamma_{+}, \gamma_{-}\right)=\left\{u: \mathbb{R} \times S^{1} \rightarrow M \mid \partial_{s} u+J_{t}\left(\partial_{t} u-X_{H_{t}}\right)=0, \lim _{s \rightarrow \pm \infty} u(s, t)=\gamma_{ \pm}(s, t)\right\}$.
Date: April 23, 2019.

We want to understand $\operatorname{dim} \tilde{m}\left(\gamma_{+}, \gamma_{-}\right)$. Given u we have a linearized operator

$$
D_{u} L: L_{1}^{2}\left(u^{*} T M\right) \rightarrow L^{2}\left(u^{*} T M\right)
$$

We can choose a trivialization of $u^{*} T M$ in which

$$
D_{u}=\partial_{s}+J_{0} \partial_{t}+A(s, t)
$$

Then we claim:

Claim 1.

$$
\lim _{s \rightarrow \pm \infty} A(s, t)=A_{ \pm}(t)
$$

and

$$
J_{0} \partial_{t}+A_{ \pm}(t)=J_{0} \nabla_{t}^{ \pm}
$$

where $\nabla^{ \pm}$is the connection on $\gamma_{ \pm}^{*} T M$ is given by the derivative of the flow of $X_{H_{t}}$.
We now clarify what exactly we mean. We have a flow $\varphi_{t}: M \rightarrow M$ (for $t \in \mathbb{R}$) with $\varphi_{0}=\mathrm{id}_{M}$ and

$$
\frac{d}{d t} \varphi_{t}(p)=X_{H_{t}}\left(\varphi_{t}(p)\right)
$$

If $\gamma: S^{1} \rightarrow M, \gamma^{\prime}(t)=X_{H_{t}}(\gamma(t))$ then $\varphi_{t}(\gamma(0))=\gamma(t)$. Then we have a map

$$
d \varphi_{t}: T_{\gamma(0)} M \rightarrow T_{\gamma(t)} M
$$

which we can think of as parallel transport, i.e. we get a connection ∇ on $\gamma^{*} T M$. So for every 1-periodic orbit we get this connection.

In particular, ker $\left(J_{0} \nabla_{t}^{ \pm}\right) \neq 0$ iff there exists a nonzero section η of $\gamma_{ \pm}^{*} T M$ with $\nabla_{t} \eta=0$, which is true iff there exists a nonzero vector $V \in T_{\gamma^{ \pm}(0)} M$ with $d \varphi_{1}(V)=V$. This is equivalent to $1 \in \operatorname{Spec}\left(d \varphi_{1}: T_{\gamma_{ \pm}(0)} M \emptyset\right)$ which is equivalent to the fixed point $\gamma_{ \pm}(0)$ of φ_{1} being degenerate. This means that if the fixed points of φ_{1} are nondegenerate, then the operators $J_{0} \nabla_{t}^{ \pm}$have kernel 0 .

Note also that $A_{ \pm}(t)$ is symmetric, ${ }^{1}$ so $J_{0} \partial_{t}+A_{ \pm}(t)$ is self-adjoint, so

$$
\operatorname{ind}\left(D_{u}\right)=\operatorname{sf}\left(\left\{J_{0} \partial_{t}+A(s, t)\right\}_{s \in \mathbb{R}}\right)
$$

Lemma 1. Let $\left\{\psi_{t}\right\}_{t \in[0,1]}$ be a family of $2 n \times 2 n$ matrices with ψ_{0} symplectic. Then ψ_{t} is symplectic for all t iff A_{t} is symmetric for all t such that $\psi_{t}^{\prime}=J_{0} A_{t} \psi_{t}$.
Proof. ψ_{t} is symplectic iff $\psi_{t}^{T} J_{0} \psi_{t}=J_{0}$. Now we take the derivative to get

$$
\begin{aligned}
0 & =\left(\psi_{t}^{\prime}\right)^{T} J_{0} \psi_{t}+\psi_{t}^{T} J_{0}+\psi_{t}^{\prime} \\
& =\psi_{t}^{\boldsymbol{T}} A_{t}^{T}\left(-J_{0}\right) J_{0} \not \psi_{t}^{\prime}+\psi_{t}^{\not{Y}} J_{0} J_{0} A_{t} \not \psi_{t}^{\prime} \\
& =A_{t}^{T}-A_{t}=0 .
\end{aligned}
$$

Define ψ_{t}^{ω} by $\psi_{0}^{ \pm}=\mathrm{id}$ and

$$
\frac{d}{d t} \psi_{t}^{ \pm}=J_{0} A_{t}^{ \pm} \psi_{t}^{ \pm}
$$

Then the matrix $\psi_{t}^{ \pm}$is symplectic because by the previous claim, it is the parallel transport map $T_{\gamma_{ \pm}(0)} M \rightarrow T_{\gamma_{ \pm}(t)} M$. This implies $A_{t} \pm$ is symmetric.

[^0]
Proposition 1.

$$
\operatorname{ind}\left(\partial_{s}+J_{0} \partial_{t}+A(s, t)\right)=\mathrm{cz}\left(\left\{\psi_{t}^{+}\right\}\right)-\mathrm{cz}\left(\left\{\psi_{t}^{-}\right\}\right)
$$

Proof. Since the index of a Fredholm operator is invariant under homotopy of Fredholm operators, WLOG $A(s, t)$ is symmetric for all s, t not just as $s \rightarrow \pm \infty$. Now define $\psi_{s, t}(s \in \mathbb{R}$ and $t \in[0,1])$ by

$$
\frac{\partial}{\partial t} \psi_{s, t}=A(s, t) \psi_{s, t}
$$

then since $A(s, t)$ is symmetric, the $\psi_{s, t}$ are symplectic.
Claim 2. For fixed s, $\operatorname{ker}\left(J_{0} \partial_{t}+A(s, t)\right) \neq 0$ iff $1 \in \operatorname{Spec}\left(\psi_{s, 1}\right)$.
Proof. There exists nonzero $\eta \in \operatorname{ker}\left(J_{0} \partial_{t}+A(s, t)\right)$ iff there exists nonzero η : $S^{1} \rightarrow \mathbb{R}^{2 n}$ with $\left(J_{0} \partial_{t}+A(s, t)\right) \eta=0$, or equivalently

$$
\partial_{t} \eta=J_{0} A(s, t) \eta
$$

This is equivalent to there existing nonzero $V \in \mathbb{R}^{2 n}$ with $\psi_{s, 1}(V)=V$.
One can further show that the spectral flow of this family of operators

$$
\left\{J_{0} \partial_{t}+A(s, t)\right\}_{s \in \mathbb{R}}
$$

is the algebraic intersection number of $\left\{\psi_{s, t}\right\}_{s \in \mathbb{R}}$ with the Maslov cycle Λ. The point is that we have a homotopy $\left\{\psi_{t}^{+}\right\} \sim\left\{\psi_{t}^{-}\right\} *\left\{\psi_{s, 1}\right\}$ where $*$ denotes concatenation. The idea is that we have an infinite rectangle of height 1 where the bottom edge is just the identity, the top is $\psi_{s, 1}$, and the sides are ψ_{t}^{-}and ψ_{t}^{+}respectively. Then going along the right side is the same as going along all three of the others. This implies that

$$
\mathrm{cz}\left(\left\{\psi_{t}^{+}\right\}\right)=\mathrm{cz}\left(\left\{\psi_{t}^{-}\right\}\right)+\underbrace{\#\left\{\psi_{s, 1}\right\} \cap \Lambda}_{\operatorname{ind}(D)} .
$$

Assume all fixed points of φ are nondegenerate. In the Floer theory setup, suppose $\gamma: S^{1} \rightarrow M$ satisfies $\gamma^{\prime}=X_{H_{t}} \circ \gamma_{1}$.

Let τ be a symplectic trivialization of $\gamma^{*} T M$. Define the Conley-Zehnder index $\mathrm{cz}_{\tau}(\gamma) \in \mathbb{Z}$ as follows. Define a path of symplectic matrices ψ_{t} by $\psi_{0}=\mathrm{id}, 1 \notin$ $\operatorname{Spec}\left(\psi_{1}\right)$. Then we have

and we have

$$
\mathrm{cz}_{\tau}(\gamma)=\mathrm{cz}\left(\left\{\psi_{t}\right\}\right) .
$$

Remark 1. $\mathrm{cz}_{\tau}(\gamma)$ is invariant under homotopy of τ. The collection of homotopy classes of symplectic trivializations of $\gamma^{*} T M$ is an affine space over \mathbb{Z}. Shifting τ by 1 shift cz by ± 2.

Let $u \in \tilde{m}\left(\gamma_{+}, \gamma_{-}\right)$. Let τ_{+}, τ_{-}be trivializations of $\gamma_{+}^{*} T M, \gamma_{-}^{*} T M$. Suppose τ_{+} and τ_{-}extend to trivializations of $u^{*} T M$. Then

$$
\operatorname{ind}\left(D_{u}\right)=\mathrm{cz}_{\tau_{+}}\left(\gamma_{+}\right)-\mathrm{cz}{\tau_{-}}\left(\gamma_{-}\right)
$$

If D_{u} is surjective, then $\tilde{m}\left(\gamma_{+}, \gamma_{-}\right)$is a manifold near u of dimension ind $\left(D_{u}\right)$.
1.2. Grading. Let (M, ω) be a closed symplectic manifold. Assume (M, ω) is symplectically aspherical, i.e. ω and $c_{1}(T M)$ vanish on $\pi_{2}(M)$. So now we're given $H: S^{1} \times M \rightarrow \mathbb{R}$ with φ_{1} nondegenerate.

Let $\gamma: S^{1} \rightarrow M$ be a 1-periodic contractible orbit with $\gamma^{\prime}=X_{H_{t}} \circ \gamma$. Define cz (γ) as follows. Let $u: D^{2} \rightarrow M$ with $u\left(e^{2 \pi i t}\right)=\gamma(t)$, i.e. we choose a disk with boundary γ. Let τ be a trivialization of $\gamma^{*} T M$ that extends over $u^{*} T M$. This is fine since every vector bundle over a disk is trivial. Now define $c z(\gamma)=\mathrm{cz}_{\tau}(\gamma)$.

Claim 3. This is well-defined.
Proof. First of all this depends only on u since the set of trivializations is contractible. So let $u^{\prime}: D^{2} \rightarrow M$ be another disk. Then τ extends over u iff τ extends over u^{\prime}. So $T M$ pulled back to the sphere formed by these two disks is trivial.

So we now have that the Floer chain complex generated by contractible 1-periodic orbits. The grading of γ will be cz (γ). If $u \in \tilde{m}\left(\gamma_{+}, \gamma_{-}\right)$and if D_{u} us surjective then $\tilde{m}\left(\gamma_{+}, \gamma_{-}\right)$is a manifold near u of dimension

$$
\mathrm{cz}\left(\gamma_{+}\right)-\mathrm{cz}\left(\gamma_{-}\right)
$$

Next time we will explain a bit more about the definition of Floer homology, and we will compute it when H does not depend on t.

[^0]: ${ }^{1}$ We prove this below.

