LECTURE 25 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. LAGRANGIAN FLOER HOMOLOGY

Again (M, ω) is a closed symplectic manifold. Assume for now that (M, ω) is symplectically aspherical, i.e. ω and $c_1(TM)$ vanish on $\pi_2(M)$. Then let $H: S^1 \times M \to \mathbb{R}$ be a time-dependent Hamiltonian. Assume $\varphi_1: M \odot$ has nondegenerate fixed points. Let

$$\mathcal{P}_{0}G(H) = \left\{ \gamma : S^{2} \to M \,|\, \gamma'(t) = X_{H_{t}}(\gamma(t)), \gamma \text{ contractible} \right\} \hookrightarrow \operatorname{Fix}(\varphi_{1}) \ .$$

Then we have the action $\mathcal{A}:\mathcal{P}_{0}\left(H
ight)\rightarrow\mathbb{R}$ defined by

$$\mathcal{A}(\gamma) = \int_{0}^{1} H_{t}(\gamma(t)) dt + \int_{D^{2}} u^{*} \omega$$

where $u: D^2 \to M$ (which exists since γ is contractible) and $u(e^{2\pi i t}) = \gamma(t)$.

We also have the Conley-Zehnder index $cz : \mathcal{P}_0(H) \to \mathbb{Z}$ Given $\gamma \in \mathcal{P}_0(H)$ choose a trivialization τ of γ^*TM which extends to the trivialization of u^*TM for u as above. Then we get a path $\{\psi_t\}_{t\in[0,1]}$ in $\operatorname{Sp}(2n)$ where $\psi_0 = 1$ and $1 \notin \operatorname{Spec}(\psi_1)$, then this gives us

$$\begin{array}{ccc} T_{\gamma(0)}M & \stackrel{d\varphi_t}{\longrightarrow} T_{\gamma(t)}M \\ \downarrow^{\tau} & \downarrow^{\tau} \\ \mathbb{R}^{2n} & \stackrel{\psi_t}{\longrightarrow} \mathbb{R}^{2n} \end{array}$$

The index is then $\operatorname{cz}(\gamma) = \operatorname{cz}(\{\psi_t\}).$

Choose $\{J_t\}$ a generic path of ω -compatible acs. CF_{*} (H, J) generated over $\mathbb{Z}/2\mathbb{Z}$ (or \mathbb{Z}) by $\mathcal{P}_0(H)$. The grading is given by cz. Then

$$\langle \partial \gamma_+, \gamma_- \rangle$$

counts $u:\mathbb{R}\times S^1\to M$ such that

$$\partial_s u + J_t \left(\partial_t u - X_{H_t} \right) = 0 \qquad \qquad \lim_{s \to \pm \infty} u \left(s, t \right) = \gamma_{\pm} \left(t \right)$$

modulo translation by s.

Claim 1. • ∂ is well-defined (assuming $\{J_t\}$ is generic),

• $\partial^2 = 0$, i.e. we have a well defined $\mathrm{HF}_*(H,J)$.

Date: April 25, 2019.

2 LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

If $cz(\gamma_+) - cz(\gamma_-) = 2$ then we want to show that $m^J(\gamma_+, \gamma_-)$ has a compactification to a compact manifold $\overline{m^J}(\gamma_+, \gamma_-)$ with boundary

$$\partial \overline{m^J}(\gamma_+,\gamma_-) = \prod_{\operatorname{cz}(\gamma_+)-\operatorname{cz}(\gamma_-)=1} m^J(\gamma_+,\gamma_0) \times m^J(\gamma_0,\gamma_-) .$$

Remark 1. Solutions to Floer's equation are equivalent to certain J-holomorphic maps as follows.

If $\varphi: (M, \omega) \odot$ is any symplectomorphism, define the mapping torus

$$Y_{\varphi} = [0,1] \times M / \{(1,x) \sim (0,\varphi(x))\}$$
.

This is in fact a smooth fiber bundle

We can cross this with $\mathbb R$ to get a fiber bundle:

$$\begin{array}{ccc} M & \longrightarrow & Y_{\varphi} \times \mathbb{R} \\ & & & \downarrow^{\pi} \\ & & S^1 \times \mathbb{R} \end{array}$$

Note that $\mathbb{R} \times Y_{\varphi}$ is symplectic with symplectic form

$$\pi^* \left(ds \ dt \right) + \tilde{\omega} \; .$$

Suppose $\varphi = \varphi_1$ where $\{\varphi_t\}_{t \in [0,1]}$ is a Hamiltonian isotopy where $\varphi_0 = id$ and

$$\frac{d}{dt}\varphi_t = X_{H_t} \circ \varphi_t \ .$$

Then a map $u:\mathbb{R}\times S^1\to M$ is equivalent to a section

$$\psi: \mathbb{R} \times S^1 \to \mathbb{R} \times Y_{\varphi} \ .$$

Given u, define

$$\psi\left(s,t\right) = \left(s,\varphi_t^{-1}\left(u\left(s,t\right)\right)\right)$$

for $s \in \mathbb{R}$ and $t \in [0, 1]$. The 1-parameter family $\{J_t\}_{t \in S^1}$ determines a compatible acs \mathbb{J} on the bundle $\mathbb{R} \times Y_{\varphi}$. On $\{(, t)\} \times M$ (for $s \in \mathbb{R}, t \in [0, 1]$)

$$\mathbb{J} = (\varphi_t)^{\pm}_* \circ J_T \circ (\varphi_t)^{\mp 1}_* \qquad \qquad \mathbb{J}\left(\tilde{\partial}_s\right) = \tilde{\partial}_t$$

Exercise 1. A solution of Floer's equation is equivalent to a \mathbb{J} -holomorphic section $\psi : \mathbb{R} \times S^1 \to \mathbb{R} \times Y_{\varphi}$.

The dictionary is as follows:

$$\begin{array}{ccc} \operatorname{Fix}\left(\varphi_{1}\right) & \leftrightarrow & \operatorname{Parallel\ sections\ of} & \bigvee \\ & \downarrow \\ S^{1} \\ u: \mathbb{R} \times S^{1} \to M & \leftrightarrow & \operatorname{sections\ } \psi: \mathbb{R} \times S^{1} \to \mathbb{R} \times Y_{\varphi} \\ u \text{ satisfies\ Floer's\ equation} & \leftrightarrow & \psi \text{ is\ } \mathbb{J}\text{-holomorphic} \end{array}$$

To prove the compactness needed to show that ∂ is well-defined and $\partial^2 = 0$, we need to rule out bubbling of \mathbb{J} -holomorphic spheres in $\mathbb{R} \times Y_{\varphi}$. If u is such a sphere $u: S^2 \to \mathbb{R} \times Y_{\varphi}$ is \mathbb{J} -holomorphic, then the composition

$$S^2 \to \mathbb{R} \times Y_{\omega} \to \mathbb{R} \times S$$

is holomorphic, which means this is constant and u is a J_t -holomorphic sphere in the fiber over some (s,t). Now the symplectically aspherical assumption implies that u is constant.

Remark 2. This mapping torus point of view allows one to define Floer homology for any nondegenerate symplectomorphism, not necessarily Hamiltonian isotopic to the identity.

So we've seen that $HF_*(H, J)$ is well-defined and

$$|\operatorname{Fix}(\varphi_1)| \ge \sum_i \operatorname{rank} \operatorname{HF}_i(H, J)$$

Claim 2. $HF_*(H, J)$ is independent of H and J.

Let $(H_0, J_{0,t})$, $(H_1, J_{1,t})$ be two generic pairs. Choose a generic homotopy $\{(H_s, J_{s,t})\}_{s \in \mathbb{R}}$ with

$$(H_s, J_{s,t}) = \begin{cases} (H_0, J_{0,t}) & s \le 0\\ (H_1, J_{1,t}) & \ge 1 \end{cases}$$

Given $\gamma_0 \in \mathcal{P}_0(H_0)$ and $\gamma_1 \in \mathcal{P}_0(H_1)$, consider

$$u: \mathbb{R}_s \times S^1_t \to M$$

satisfying

(1)
$$\partial_s u + J_{s,t} \left(\partial_t u - X_{H_{s,t}} \right) = 0 \\ \lim_{s \to \infty} u \left(s, t \right) = \gamma_1 \left(t \right) \qquad \lim_{s \to -\infty} u \left(s, t \right) = \gamma_0 \left(t \right) .$$

Generically, the space of solutions is a manifold of dimension $cz(\gamma_1) - cz(\gamma_0)$. Define

$$\varphi: \operatorname{CF}_*(H_1, J) \to \operatorname{CF}_*(H_0, J_0)$$

by defining $\langle \varphi \gamma_1, \gamma_0 \rangle$ to be the (mod 2) count of solutions to (1).

Lemma 1. • *This is a well defined chain map.*

• The map on homology does not depend on the homotopy from (H_0, J_0) to (H_1, J_1) which implies we have a well-defined map

$$\Phi: \operatorname{HF}_*(H_1, J_1) \to \operatorname{HF}_*(H_0, J_0)$$

•

 $\operatorname{HF}_*(H_2, J_2) \xrightarrow{\Phi} \operatorname{HF}_*(H_1, J_1) \xrightarrow{\Phi} \operatorname{HF}_*(H_0, J_0) \quad .$

The last step is then to show that Φ : HF_{*} $(H, J) \odot$ is the identity. To prove this, choose

$$(H_s, J_{s,t}) = (H, J_t) \quad .$$

We skip showing that this constant homotopy satisfies the required transversality.

Lemma 2. If $cz(\gamma_0) = cz(\gamma_1)$ then the set of solutions to (1) is empty if $\gamma_0 \neq \gamma_1$, and a single point if $\gamma_0 = \gamma_1$.

Proof. A solution to (1) is a solution to Floer's equation for (H, J). If $\gamma_0 \neq \gamma_1$ then $m^J(\gamma_1, \gamma_9) = \emptyset$ since its dimension is -1. If $\gamma_0 = \gamma_1$ then we have the "constant" constanolution

$$u(s,t) = \gamma(t)$$
.

Then Floer's equation becomes:

4

then

$$\partial_{s} u + J_t (\partial_t u - X_{H_t}) = 0$$

so this is a solution. And there is no other solution because if there is a solution u to Floer's equation which is non-constant (in s) with

$$\lim_{s \to \pm \infty} u(s,t) = \gamma_{\pm}(t)$$
$$\mathcal{A}(\gamma_{+}) > \mathcal{A}(\gamma_{-}) .$$

Theorem 1. There is a canonical isomorphism

 $\mathrm{HF}_{*}\left(H,J\right) = H^{sing}_{*+n}\left(M\right) \; .$

This implies rank $(HF_i) = b_{i+n}$ which implies the Arnold conjecture.

Proof punchline. The idea is to choose $H : M \to \mathbb{R}$ a Morse function and take $H_t = H$. Then choose $J \omega$ -compatible such that the associated metric g makes the pair (H,g) Morse-Smale. Choose $J_t = J$. Then we show that if $\epsilon > 0$ is sufficiently small, then CF $(\epsilon H, J)$ is canonically isomorphic to the Morse complex:

$$\mathrm{CF}_{*}\left(\epsilon H,J\right)=C_{*+n}^{\mathrm{Morse}}\left(\epsilon H,g\right)$$

and then we use the fact that Morse homology agrees with singular homology. $\hfill\square$