LECTURE 26
 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

1. Symplectically aspherical case

Let (M, ω) be a closed symplectic manifold which is symplectically aspherical, so $c_{1}(T M)$ and $[\omega]$ vanish on $\pi_{2}(M)$.

Given generic $H: S^{1} \times M \rightarrow \mathbb{R}$ and a generic family $J=\left\{J_{t}\right\}, \operatorname{HF}_{*}(H, J)$ is well-defined and depends only on M.

Choose $H: M \rightarrow \mathbb{R}$ a Morse function and an ω-compatible J so we have that if

$$
g(V, W)=\omega(V, J W)
$$

then (H, g) is Morse-Smale.
Proposition 1. If $\epsilon>0$ is sufficiently small then there is an isomorphism of chain complexes

$$
\mathrm{CF}_{*}(\epsilon H, J)=C_{*+n}^{\text {Morse }}(H, g) \otimes \mathbb{Z} / 2 \mathbb{Z}
$$

Proof. There is an obvious inclusion:

$$
\operatorname{crit}(H) \hookrightarrow \mathcal{P}_{0}(H)=\left\{\gamma: S^{1} \rightarrow M \text { contractible, } \gamma^{\prime}=X_{H} \circ \gamma\right\}
$$

Then the following is a classical lemma that we will assume:
Lemma 1. This is a bijection if $\epsilon>0$ is small enough.
It is also true that cz $(p)=\operatorname{ind}(p)-n$.
Let $\eta: \mathbb{R} \rightarrow M$ be a flow line of ∇_{H}. If

$$
\eta^{\prime}(s)=\nabla H(\eta(s)) \quad \lim _{s \rightarrow \pm \infty} \eta(s)=p_{ \pm} \in \operatorname{crit}(H)
$$

then $u: \mathbb{R} \times S^{1} \rightarrow M$ defined by

$$
u(s, t)=\eta(s)
$$

is a solution to Floer's equation.
So we have an inclusion

$$
m^{\text {Morse }}\left(p_{+}, p_{-}\right) \hookrightarrow m^{\text {Floer }}\left(p_{+}, p_{-}\right)
$$

Then we want to show that if ind $\left(p_{+}\right)-\operatorname{ind}\left(p_{-}\right)=1$ and $\epsilon>0$ is small enough then this is a bijection, and $m^{\text {Floer }}\left(p_{+}, p_{-}\right)$is cut out transversely. so if we prove this then the differentials agree.

We have an operator

$$
D_{\eta}: L_{1}^{2}\left(\mathbb{R}, \eta^{*} T M\right)-L^{2}\left(\mathbb{R}, \eta^{*} T M\right)
$$

[^0]which in some trivialization looks like
$$
D_{\eta} \xi=\partial_{s} \xi+A(s) \xi
$$

On the other hand we have

$$
D_{u}: L L_{1}^{2}\left(\mathbb{R} \times S^{1}, u^{*} T M\right) \rightarrow L^{2}\left(\mathbb{R} \times S^{1}, u^{*} T M\right)
$$

which in a trivialization is

$$
D_{u} \xi=\partial_{s} \xi+J \partial_{t} \xi+A(s) \xi
$$

Lemma 2. If ind $\left(p_{+}\right)-\operatorname{ind}\left(p_{-}\right)=1$ and if $\epsilon>0$ is small enough then every element of $\operatorname{ker}\left(D_{u}\right)$ is S^{1}-invariant.

Proof. Let $\xi \in \operatorname{ker}\left(D_{i} u\right)$. Use the trivialization to regard $\xi: \mathbb{R} \rightarrow \mathbb{R}^{2 n}$. Let

$$
\eta(s)=\int_{S^{1}} \xi(s, t) d t
$$

Then $(s, t) \mapsto \eta(s)$ is an element of ker D_{u}.
So we can subtract this from ξ to get another element of ker D_{u}. Thus it is enough to assume

$$
\int_{S^{1}} \xi(s, t) d t=0
$$

for all s and prove that $\xi \equiv 0$ (if $\epsilon>0$ is small enough).
Now we have

$$
\begin{aligned}
\xi(s, t) & =\int\left(\xi(s, \alpha)+\int_{\alpha}^{t} \partial_{t} \xi(s, \beta) d \beta\right) d \alpha \\
& =\int\left|\partial_{t} \xi(s, t)\right| d t
\end{aligned}
$$

and

$$
|\xi(s, t)|^{2} \leq \int\left|\partial_{t} \xi(s, t)\right|^{2} d \tau
$$

Now by a calculation in Salamon-Zehnder from 1992, we have

$$
\begin{aligned}
\int|\xi(s, t)|^{2} d s d t & \leq \int_{\mathbb{R} \times S^{1}}\left|\left\langle\xi, \partial_{s} \xi+J \partial_{t} \xi\right\rangle\right|^{2} d s d t \\
& =\int_{\mathbb{R} \times S^{1}}|\langle\xi(s, t), A(s)\rangle|^{2} d s d t \\
& \leq c \int|\xi(s, t)|^{2} d s d t
\end{aligned}
$$

If $c<1$ then we are done. If $c \geq 1$ then multiplying H by ϵ has the effect of multiplying $A(s)$ by ϵ.

Up to \mathbb{R} translation, only finitely many flow lines with $\operatorname{ind}\left(p_{+}\right)-\operatorname{ind}\left(p_{-}\right)=1$. Therefore we can choose $\epsilon>0$ small enough to work for all of them.

This lemma implies that for $\epsilon>0$ small enough the Floer trajectories coming from Morse flow-lines with index difference 1 are cut out transversely.

To complete the proof, we will show that if H has been multiplied by $\epsilon>0$ small enough as above, ind $\left(p_{+}\right)$- ind $\left(p_{-}\right)-1$, and N is a sufficiently large positive integer, then every Floer trajectory from p_{+}to p_{-}for $(H / N, J)$ comes from a Morse flow line.

Proceed by contradiction. Suppose there are integers $\left\{N_{k}\right\}_{K=1}$ with $N_{k} \rightarrow \infty$ and non- S^{1}-invariant Floer trajectories u_{k} in $m^{\text {Floer }}\left(p_{+}, p_{-}\right)$for $\left(H / N_{k}, J\right)$. Define $\hat{u}_{k}: \mathbb{R} \times S^{1} \rightarrow M$ by

$$
\hat{u}_{k}(s, t)=u_{k}\left(N_{k} s, N_{k} t\right) .
$$

Then \hat{u}_{k} satisfies Floer's equation for (H, J) since

$$
\partial_{s} u_{k}+J \partial_{t} u_{k}+\frac{1}{N_{k}} X_{H}=0 \quad \Longrightarrow \quad \partial_{s} \hat{u}_{k}+J \partial_{t} \hat{u}_{k}+X_{H}=0
$$

By compactness we can pass to a subsequence such that

$$
\hat{u}_{k} \xrightarrow{k \rightarrow \infty} u_{\infty} \in m^{\text {Floer }}\left(p_{+}, p_{-}\right)
$$

but now u_{∞} must be S^{1}-invariant. By the lemma, u_{∞} is isolated in $m^{\text {Floer }}\left(p_{+}, p_{-}\right) / \mathbb{R}$. Consequently u_{∞} cannot be a limit of non- S^{1}-invariant solutions. This is a contradiction as desired.

So modulo some technical things we have proven the Arnold conjecture in the symplectically aspherical case.

2. Monotone case

Up until now we have assumed that $c_{1}(T M)$ and $[\omega]$ vanish on $\pi_{2}(M)$. We can instead take the monotone case, i.e. that $c_{1}(T M)=\lambda[\omega]$ on $\pi_{2}(M)$ for some $\lambda>0$.
2.1. Grading. In this case HF_{*} no longer has an integer grading. The grading has values in \mathbb{Z} / N where

$$
N=2 \min \left\{\text { positive values of } c_{1}(T M) \text { on } \pi_{2}(M)\right\}
$$

This is sometimes called the minimal Chern number.
Given $\gamma \in \mathcal{P}_{0}(H)$ we choose $u: D^{2} \rightarrow M$ such that $u\left(e^{2 \pi i t}\right)=\gamma(t)$. Let τ be a trivialization of $\gamma^{*} T M$ that extends over D^{2}. Define $\mathrm{cz}(\gamma)=\mathrm{cz}_{\tau}(\gamma)$. Choosing a different u shifts the RHS by a multiple of $2 N$. Then we have

$$
\mathrm{cz}_{\tau}(\gamma)-\mathrm{cz}_{\tau^{\prime}}(\gamma)= \pm 2\left\langle c_{1}(T M), u \# u^{\prime}\right\rangle
$$

which implies

$$
\mathrm{cz}(\gamma) \in \mathbb{Z} / 2 N
$$

is well-defined.
In the monotone case, when we prove compactness, bubbling can happen, but it has a cost. ${ }^{1}$ As in fig. $1 c_{1}$ goes down by $2 k$, this cylinder had ind ≤-1, so it doesn't exist for generic J.

The rest of the argument goes through as before which means in the monotone case we have

$$
\mathrm{HF}_{*}(H, J) \simeq \bigoplus_{k-n \equiv * \bmod 2 N} H_{k}(M)
$$

This implies that

$$
\sum_{* \in \mathbb{Z} / 2 N} \operatorname{rank} \mathrm{HF}_{*}=\sum_{k} b_{j}(M)
$$

which still implies the Arnold conjecture.

[^1]

Figure 1. ind $(u)=1$, and when bubbling occurs we get that $\omega>0$ which implies $c_{1}=k>0$.

3. More general cases

There are some more general cases where we need to work a bit harder. One change that needs to be made is that we take coefficients in what's called a Novikov ring. ${ }^{2}$ Bubbling can't be ruled out in general, so to get well-defined counts of things we need virtual techniques.

[^2]
[^0]: Date: April 30, 2019.

[^1]: ${ }^{1}$ And this cost is just too much.

[^2]: ${ }^{2}$ This is something similar to a power series ring.

