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1. Symplectically aspherical case

Let (M,ω) be a closed symplectic manifold which is symplectically aspherical,
so c1 (TM) and [ω] vanish on π2 (M).

Given generic H : S1 ×M → R and a generic family J = {Jt}, HF∗ (H,J) is
well-defined and depends only on M .

Choose H : M → R a Morse function and an ω-compatible J so we have that if

g (V,W ) = ω (V, JW )

then (H, g) is Morse-Smale.

Proposition 1. If ε > 0 is sufficiently small then there is an isomorphism of chain
complexes

CF∗ (εH, J) = CMorse
∗+n (H, g)⊗ Z/2Z .

Proof. There is an obvious inclusion:

crit (H) ↪→ P0 (H) =
{
γ : S1 →M contractible, γ′ = XH ◦ γ

}
.

Then the following is a classical lemma that we will assume:

Lemma 1. This is a bijection if ε > 0 is small enough.

It is also true that cz (p) = ind (p)− n.
Let η : R→M be a flow line of ∇H . If

η′ (s) = ∇H (η (s)) lim
s→±∞

η (s) = p± ∈ crit (H)

then u : R× S1 →M defined by

u (s, t) = η (s)

is a solution to Floer’s equation.
So we have an inclusion

mMorse (p+, p−) ↪→ mFloer (p+, p−) .

Then we want to show that if ind (p+) − ind (p−) = 1 and ε > 0 is small enough
then this is a bijection, and mFloer (p+, p−) is cut out transversely. so if we prove
this then the differentials agree.

We have an operator

Dη : L2
1 (R, η∗TM)− L2 (R, η∗TM) ,
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which in some trivialization looks like

Dηξ = ∂sξ +A (s) ξ .

On the other hand we have

Du : LL2
1

(
R× S1, u∗TM

)
→ L2

(
R× S1, u∗TM

)
which in a trivialization is

Duξ = ∂sξ + J∂tξ +A (s) ξ .

Lemma 2. If ind (p+) − ind (p−) = 1 and if ε > 0 is small enough then every
element of ker (Du) is S1-invariant.

Proof. Let ξ ∈ ker (Diu). Use the trivialization to regard ξ : R→ R2n. Let

η (s) =

∫
S1

ξ (s, t) dt .

Then (s, t) 7→ η (s) is an element of kerDu.
So we can subtract this from ξ to get another element of kerDu. Thus it is

enough to assume ∫
S1

ξ (s, t) dt = 0

for all s and prove that ξ ≡ 0 (if ε > 0 is small enough).
Now we have

ξ (s, t) =

∫ (
ξ (s, α) +

∫ t

α

∂tξ (s, β) dβ

)
dα

=

∫
|∂tξ (s, t)| dt

and

|ξ (s, t)|2 ≤
∫
|∂tξ (s, t)|2 dτ .

Now by a calculation in Salamon-Zehnder from 1992, we have∫
|ξ (s, t)|2 ds dt ≤

∫
R×S1

|〈ξ, ∂sξ + J∂tξ〉|2 ds dt

=

∫
R×S1

|〈ξ (s, t) , A (s)〉|2 ds dt

≤ c
∫
|ξ (s, t)|2 ds dt

If c < 1 then we are done. If c ≥ 1 then multiplying H by ε has the effect of
multiplying A (s) by ε.

Up to R translation, only finitely many flow lines with ind (p+) − ind (p−) = 1.
Therefore we can choose ε > 0 small enough to work for all of them. �

This lemma implies that for ε > 0 small enough the Floer trajectories coming
from Morse flow-lines with index difference 1 are cut out transversely.

To complete the proof, we will show that if H has been multiplied by ε > 0
small enough as above, ind (p+)− ind (p−)−1, and N is a sufficiently large positive
integer, then every Floer trajectory from p+ to p− for (H/N, J) comes from a Morse
flow line.
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Proceed by contradiction. Suppose there are integers {Nk}K=1 with Nk → ∞
and non-S1-invariant Floer trajectories uk in mFloer (p+, p−) for (H/Nk, J). Define
ûk : R× S1 →M by

ûk (s, t) = uk (Nks,Nkt) .

Then ûk satisfies Floer’s equation for (H,J) since

∂suk + J∂tuk +
1

Nk
XH = 0 =⇒ ∂sûk + J∂tûk +XH = 0 .

By compactness we can pass to a subsequence such that

ûk
k→∞−−−−→ u∞ ∈ mFloer (p+, p−)

but now u∞ must be S1-invariant. By the lemma, u∞ is isolated inmFloer (p+, p−) /R.
Consequently u∞ cannot be a limit of non-S1-invariant solutions. This is a contra-
diction as desired. �

So modulo some technical things we have proven the Arnold conjecture in the
symplectically aspherical case.

2. Monotone case

Up until now we have assumed that c1 (TM) and [ω] vanish on π2 (M). We
can instead take the monotone case, i.e. that c1 (TM) = λ [ω] on π2 (M) for some
λ > 0.

2.1. Grading. In this case HF∗ no longer has an integer grading. The grading has
values in Z/N where

N = 2 min {positive values of c1 (TM) on π2 (M)} .
This is sometimes called the minimal Chern number.

Given γ ∈ P0 (H) we choose u : D2 →M such that u
(
e2πit

)
= γ (t). Let τ be a

trivialization of γ∗TM that extends over D2. Define cz (γ) = czτ (γ). Choosing a
different u shifts the RHS by a multiple of 2N . Then we have

czτ (γ)− czτ ′ (γ) = ±2 〈c1 (TM) , u#u′〉
which implies

cz (γ) ∈ Z/2N
is well-defined.

In the monotone case, when we prove compactness, bubbling can happen, but
it has a cost.1 As in fig. 1 c1 goes down by 2k, this cylinder had ind ≤ −1, so it
doesn’t exist for generic J .

The rest of the argument goes through as before which means in the monotone
case we have

HF∗ (H,J) '
⊕

k−n≡∗mod 2N

Hk (M) .

This implies that ∑
∗∈Z/2N

rank HF∗ =
∑
k

bj (M)

which still implies the Arnold conjecture.

1And this cost is just too much.
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γ+

γ−

→

γ+

γ−

Figure 1. ind (u) = 1, and when bubbling occurs we get that
ω > 0 which implies c1 = k > 0.

3. More general cases

There are some more general cases where we need to work a bit harder. One
change that needs to be made is that we take coefficients in what’s called a Novikov
ring.2 Bubbling can’t be ruled out in general, so to get well-defined counts of things
we need virtual techniques.

2This is something similar to a power series ring.


	1. Symplectically aspherical case
	2. Monotone case
	2.1. Grading

	3. More general cases

