LECTURE 27 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

Today we will do an introduction to some of the other kinds of important Floer homology.

- Morse homology (model case)
- Floer homology of (Hamiltonian) symplectomorphisms (modulo Hamiltonian isotopy)
- Lagrangian Floer homology
- Fukaya category
- Heegaard Floer homology (is isomorphic to...)
- Seiberg-Witten Floer homology (is isomorphic to...)
- Embedded contact homology
- Cylindrical contact homology

1. LAGRANGIAN FLOER HOMOLOGY

Let (M, ω) be a closed symplectic manifold, and $L_0, L_1 \subseteq M$ closed Lagrangian submanifolds which intersect transversely. The simplest case is when $\pi_2(M, L_0) =$ 0. Also assume L_0 is Hamiltonian isotopic to L_1 . Define $CF_*(L_0, L_1)$ to be generated (over $\mathbb{Z}/2\mathbb{Z}$) by the intersection points of L_0 and L_1 . There is a relative grading by the Maslov index.¹ To define the differential, choose a generic 1-parameter family $\{J_t\}_{t \in [0,1]}$ of ω -compatible acs. If $p_-, p_+ \in L_0 \cap L_1$, define

$$\tilde{m}^{J}(p_{+},p_{-}) = \left\{ u : \mathbb{R}_{s} \times [0,1]_{t} \to M \middle| \begin{array}{l} \partial_{s}u + J_{t}\partial_{t}u = 0\\ \forall s, u\,(s,0) \in L_{0}, u\,(s,1) \in L_{1}\\ \forall t, \lim_{s \to \pm \infty} u\,(s,t) = p_{\pm} \end{array} \right\}$$

The picture is as in fig. 1.

Date: May 2, 2019.

 1 We will come back to what this means.

FIGURE 1. The map u maps $\mathbb{R} \times [0, 1]$ to the disk on the right.

 \mathbb{R} acts on $\tilde{m}^{J}(p_{+}, p_{-})$ by translating s. Define

$$m^{J}(p_{+},p_{-}) = \tilde{m}^{J}(p_{+},p_{-}) / \mathbb{R}$$

Now we have that

dim $(m_u^J(p_+, p_-)) = ($ Maslov index of $p_+) - ($ Maslov index of $p_-)$

relative to u. The differential ∂ counts these when dim $(m_u^J(p_+, p_-)) = 0$. Then we can define HF_{*} (L_0, L_1) .

Theorem 1. Up to grading shifts, this is isomorphic to the ordinary homology $H_*(L_0)$.

Idea. First we want to prove it is invariant under Hamiltonian isotopy of L_0 and L_1 separately.

To compute this, start with L_0 . Recall that a neighborhood of L_0 is symplectomorphic to a neighborhood of the zero section in T^*L_0 . If $f : L_0 \to \mathbb{R}$ then the graph of df in T^*L_0 is Hamiltonian isotopic to the zero section. Assume fis Morse, take L_1 to be the graph of df. Multiply f by $\epsilon > 0$ as needed. Then $L_0 \cap L_1 = \operatorname{crit}(f)$. Then we want to show that ∂ on $\operatorname{CF}_*(L_0, L_1)$ agrees with the Morse differential.

Corollary 1. If (M, ω) is a closed symplectic manifold and $L \subset M$ is a closed Lagrangian submanifold with $\pi_2(M, L) = 0$, then L is displaceable.

Warning 1. This is false in general without the assumption that $\pi_2(M, L) = 0$.

Counterexample 1. Consider S^2 and take L to be a circle which does not divide S^2 into pieces of equal area. Then the Lagrangian Floer homology is not even defined.

Remark 1. If $\varphi: (M, \omega) \bigcirc$ is a Hamiltonian symplectomorphism we can define

$$L_{0} = \Delta = \{(x, x) \mid x \in M\} \subset (M \times M, -\omega \oplus \omega)$$
$$L_{1} = \Gamma(\varphi) = \{(x, \varphi(x)) \mid x \in M\} \subset (M \times M, -\omega \oplus \omega)$$

and then L_0 and L_1 are in fact Lagrangians. Then $L_0 \cap L_1$ consists exactly of the fixed points of φ . For suitable J, the differentials on $\operatorname{CF}_*(L_0, L_1)$ and $\operatorname{CF}_*(\varphi)$ agree.

1.1. **Fukaya category.** The objects of the Fukaya category are Lagrangians and the morphism space is exactly the Lagrangian Floer homology. Then the composition somehow counts holomorphic triangles to send:

 $\operatorname{HF}_{*}(L_{0}, L_{1}) \otimes \operatorname{HF}_{*}(L_{1}, L_{2}) \to \operatorname{HF}_{*}(L_{0}, L_{2})$.

2. Cylindrical contact homology

Suppose $Y \subseteq \mathbb{R}^{2n}$ is a smooth star-shaped hypersurface. (Suppose further the simplifying assumption that Y is the boundary of a convex domain.) Recall that

$$\lambda = \frac{1}{2} \sum_{i=1}^{n} (x_i \, dy_i \, - y_i \, dx_i)|_{Y}$$

is a contact form. Assume that $\lambda|_{Y}$ is nondegenerate. Write $\xi = \ker \lambda$.

Define the cylindrical contact homology $CH_*(Y)$ as follows. $CC_*(Y)$ is generated over \mathbb{Q} by "good" Reef orbits. To define the differential (modulo transversality

 $\mathbf{2}$

FIGURE 2. The cylinder $Y \times \mathbb{R}$ with one Reeb orbit at each end.

trouble which is okay when n = 2) choose a generic almost complex structure J on $\mathbb{R}_s \times Y$ such that

- $J(\partial_s) = \mathbb{R}$
- $J(\xi) = \xi$, compatibly with $d\lambda$.
- J is invariant under the \mathbb{R} action translating s.

If γ_+ , γ_- are Reeb orbits, define

$$\tilde{m}^{J}(\gamma_{+},\gamma_{-}) = \left\{ u: \mathbb{R} \times S^{1} \to \mathbb{R} \times Y \middle| \begin{array}{c} \partial_{s} u + J \partial_{t} u = 0, \\ \lim_{s \to \pm \infty} \pi_{\mathbb{R}} \left(u\left(s,t\right) \right) = \pm \infty, \\ \lim_{s \to \pm \infty} \pi_{Y} \left(u\left(s,t\right) \right) \text{ param. } \gamma_{\pm} \end{array} \right\} / \mathbb{R} \times S^{1},$$

where this $\mathbb R$ is in the domain, and similarly

$$m^{J}(\gamma_{+},\gamma_{-}) = \tilde{m}^{J}(\gamma_{+},\gamma_{-}) / \mathbb{R}$$

where this \mathbb{R} comes from the target. The picture is as in fig. 2.

If transversality holds (true for generic J when n = 2) then

$$\dim \tilde{m}^{J}(\gamma_{+},\gamma_{-}) = \operatorname{cz}(\gamma_{+}) - \operatorname{cz}(\gamma_{-})$$

Choose a trivialization τ of ξ over Y. Given a Reeb orbit $\gamma : \mathbb{R}/T\mathbb{Z} \to Y$ and given $t \in [0,T]$ we have

$$\begin{array}{c} \text{Lin. Reeb flow} \\ \xi_{\gamma(0)} & \xi_{\gamma(t)} \\ \downarrow & \downarrow^{\tau} \\ \mathbb{R}^{2n} \xrightarrow{\varphi_t} \mathbb{R}^{2n} \end{array}$$

where

$$\operatorname{cz}(\gamma) = \operatorname{cz}\left(\{\varphi_t\}_{t\in[0,T]}\right)$$

A Reeb orbit of γ is *bad* if it is an even multiple cover of a Reeb orbit $\overline{\gamma}$ such that $cz(\gamma)$ and $cz(\overline{\gamma})$ have opposite parity. Then

$$CC_*(Y) = \mathbb{Q} \{ \text{good Reeb orbits with } cz = * \}$$
.

MATH 242

The differential is defined as

$$\partial \gamma_{+} = \sum_{\operatorname{cz}(\gamma_{-}) = \operatorname{cz}(\gamma_{+}) - 1} \sum_{u \in m^{J}(\gamma_{+}, \gamma_{-})} \epsilon(u)(\#) \gamma_{-}$$

where ϵ is the sign in ± 1 and # is come combinatorial factor in $\mathbb{N}^{>0}$.

Theorem 2. $\partial^2 = 0$ and in fact

$$CH_*(Y) = \begin{cases} \mathbb{Q} & * = n - 1 + 2n, k \in \mathbb{N}^{>0} \\ 0 & o/w \end{cases}$$

Exercise 1. If $Y = \partial E(a_1, \ldots, a_n)$ with $a_i/a_j \notin \mathbb{Q}$ for $i \neq j$ then

cz: {Reeb orbits}
$$\xrightarrow{\text{Bij.}} \{n-1+2k \mid k \in \mathbb{N}^{>0}\}$$

2.1. Application to symplectic embeddings. Given Y as above with $Y = \partial X$ and a positive integer k, define $c_k(X)$ to be the min of $L \in \mathbb{R}$ such that the grading n-1+2n class in CH_{*} is represented by a linear combination of good Reeb orbits with period $\leq L$.

Example 1. $c_k(E(a_1,\ldots,a_n))$ is the *k*th number in the sequence of positive integer multiples of a_1,\ldots,a_n written in non-decreasing order.

Theorem 3. If there exists a symplectic embedding $X \xrightarrow{\varphi} X'$ then $c_k(X) \leq c_k(X')$ for all k.

The idea of the theorem is as follows. $\varphi(X)$ sits inside X so we can define $W = X' \setminus \operatorname{int}(\varphi(X))$ which is a symplectic cobordism between ∂X and $\partial X'$ then we would have to show this induces a map on cylindrical contact homology which gives us the result.