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Recall last week we introduced the basic notions of a symplectic manifold, a
Hamiltonian vector field, and a symplectomorphism. Today we will talk about
symplectic embeddings and Lagrangian submanifolds.

1. Symplectic embeddings

Definition 1. Let
(
M2n, ω

)
and

(
M ′2n, ω′

)
be two (not necessarily closed/compact)

symplectic manifolds of the same dimension. A symplectic embedding ϕ : (M,ω) ↪→
(M ′, ω′) is a smooth embedding ϕ : M ↪→M ′ such that ϕ∗ω′ = ω.

This is like a symplectomorphism, only it doesn’t have to be surjective. A
basic question we might ask is: for which (M,ω) and (M ′, ω′) does a symplectic
embedding exist? Observe there is a very basic necessary condition: if there exists
a symplectic embedding ϕ : (M,ω) ↪→ (M ′, ω′), then

Vol
(
M2n, ω

)
≤ Vol

(
M ′2n, ω

)
where

Vol
(
M2n, ω

)
:=

1

n!

∫
M

ωn .

Note that this agrees with the usual definition of volume for M ⊆ R2n and the
standard symplectic form:

ωstd =

n∑
i=1

dx dy ωnstd = n! dx1 dy1 · · · dxn dyn .

To see that this condition holds on the volume, we can write:

Vol (M,ω) =
1

n!

∫
M

ωn =
1

n!

∫
M

(ϕ∗ω′)
n

=
1

n!

∫
ϕ(M)

(ω′)
n

= Vol
(
ϕ (M) , ω′|ϕ(M)

)
≤ Vol (M ′, ω′)

Fact 1. This condition is sufficient for contractible open subsets of R2.

So in R2 we just need to check that the area of one is smaller than the other in
order for there to exist a symplectic embedding of one in the other. In 1985 Gromov
wrote Pseudo-holomorphic curves and symplectic manifolds which launched the
modern era of symplectic geometry. One of the first theorems shows us that the
analogous statement is false in R2n for n > 1. Fix n > 1. For r > 0, define the ball
to be

B (r) =
{
z ∈ Cn |π |z|2 < r

}
.

Date: January 29, 2019.

1



2 LECTURES BY: PROFESSOR MICHAEL HUTCHINGS NOTES BY: JACKSON VAN DYKE

So this is a ball with 2-dimensional cross section of area r. Define the cylinder to
be

Z (r) =
{
z ∈ Cn |π |z1|2 < r

}
.

So this is a disk of area r crossed with Cn−1. Then we have Gromov’s nonsqueezing
theorem:

Theorem 1 (Gromov). There exists a symplectic embedding B (r) ↪→ Z (R) iff
r ≤ R.

Note that the direction ⇐= is trivial, since then the ball is just a subset of the
cylinder. Also note that in the volume preserving world we could just make the
sphere thinner in the appropriate direction and stretch it sufficiently in the other
direction. An equivalent version of this is the following. Let ρ : Cn → C send
z 7→ z1. Then for any symplectic embedding ϕ : B (r)→ Cn we have that

Area (ρ (ϕ (B))) ≥ r .

So the shadow can’t live in a disk of area smaller than r. We can think of this as
a classical version of the uncertainty principle. The z1 factor has coordinates x1
and y1, and no matter what transformation we come up with to make one of the
coordinates very small, the other coordinate will get much larger to conserve the
area.

The following is a related result. In n dimensions, given a set of n numbers
a1, · · · , an > 0, we can define the ellipsoid

E (a1, · · · , an) =

{
z ∈ Cn |π

n∑
i=1

|zi|2

ai
< 1

}
.

Note that if ai = a for all i, this is just the ball of radius a.
Now we have the question of when there exists a symplectic embedding

E (a1, · · · , an) ↪→ E (b1, · · · , bn) .

For n = 1 it just has to be a1 ≤ b1 for an embedding to exist. For n = 2 as we will
see, and for n > 2 it is an open question.

For n = 2, given a1, a2 > 0 define N (a1, a2)k≥0 to be the sequence of all linear
combinations m1a1 +m2a2 where mi ∈ N in increasing order with repetitions. For
example,

N (1, 1)k≥0 = {0, 1, 1, 2, 2, 2, 3, 3, 3, 3, · · · }
N (1, 2)k≥0 = {0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, · · · } .

Then there is a theorem:

Theorem 2 (McDuff,2010). There exists a symplectic embedding E (a1, a2) ↪→
E (b1, b2) iff

Nk (a1, a2) ≤ Nk (b1, b2)

for all k.

Remark 1. Note that:

(1) VolE (a, b) = ab/2 .

Remark 2. There exists an embedding E (1, 2) ↪→ E (c, c) iff c ≥ 2.



LECTURE 3 3

Proof. If c ≥ 2 then E (1, 2) ⊂ E (c, c). Now we can calculate:

N (1, 2) = (0, 1, 2, 2, 3, 3, · · · )
N (c, c) = (0, c, c, 2c, 2c, 2c, · · · )

and the result follows from the above theorem. �

McDuff-Schlenk explicitly computed, for a ≥ 1, the function

f (a) = inf {c |E (1, a) ↪→ B (c)} .
The answer turns out to be very crazy. Note that f is bounded above by a, and
the volume constraint in (1) implies that f (a) ≥

√
a. At first, f is the Fibonacci

staircase until
((

1 +
√

5
)
/2
)4

where it is 0 until (17/6)
2

after which f =
√
a.

Exercise 1. Show that:

lim
k→∞

Nk (a, b)
2

k
= 2ab = 4 Vol (E (a, b)) .

[Hint: It has to do with counting lattice points in triangles.]

Remark 3. Gromov non-squeezing implies that if a symplectic embedding E (a1, · · · , an)→
E (b1, · · · , bn) exists, then min (ai) ≤ min (bi).

2. Lagrangian submanifolds

Definition 2. Let
(
M2n, ω

)
be a symplectic manifold. A Lagrangian submanifold

is a submanifold L ⊂M such that dimL = n, and ω|L ≡ 0.

Remark 4. If Z ⊂M is a submanifold of M such that ω|Z ≡ 0, then dimZ ≤ n.

Proof. Let p ∈ Z. Define the symplectic complement to be

(TpZ)
ω

= {v ∈ TpM | ∀w ∈ TpZ, ω (v, w) = 0} .

Since ω : TpM
∼−→ T ∗pM is an isomorphism, it follows that dimTpZ+dim (TpZ)

ω
=

2n.
Then if dimZ > n, we have that dim (TpZ)

ω
< n so there exists v ∈ TpZ\(TpZ)

ω

so there exists w ∈ TpZ with ω (v, w) 6= 0, which is a contradiction. �

2.1. Examples.

Example 1. For n = 1, any 1-dimensional submanifold is Lagrangian.

Example 2. In Cn, if γ1, · · · , γn are simple closed curves in C, then γ1×· · ·×γn ⊂
Cn is a Lagrangian submanifold diffeomorphic to Tn =

(
S1
)n

. This is Lagrangian
because the cartesian product of a collection of Lagrangians is Lagrangian.

Example 3. Let X be a smooth n-dimensional manifold. In (T ∗X, dλ ) we have
the following Lagrangians. First we have the zero section, which is a Lagrangian
since λ|X ≡ 0. This is compact when X is compact. Any fiber F is Lagrangian
since λ|F ≡ 0. Let µ be a 1-form, and let L be the graph of µ.

Claim 1. Let s : X
∼−→ L ⊂ T ∗X map p 7→ (p, µ (p)). Then s∗λ = µ.

The definition of λ implies this tautologically.1 It follows from this claim, that
s∗ dλ = dµ . Then L is Lagrangian iff s∗ dλ is identically 0, which is the case iff
dµ = 0, i.e. µ is closed. So a graph of a 1-form is a Lagrangian iff the 1-form is
closed.

1Professor Hutchings says that if this is unclear, you should try to enter a state of zen.
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2.2. Exact Lagrangians.

Definition 3. A Lagrangian L ⊂ T ∗X is exact if L|λ is exact.

Example 4. The graph of a 1-form µ is exact iff µ is an exact 1-form.

Conjecture 1 (Arnold’s Nearby Lagrangian Conjecture). If X is a compact, con-
nected smooth manifold and L is a compact, connected exact Lagrangian in T ∗X,
then L is Hamiltonian isotopic to the zero section.

This is known for S1 and S2.
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