LECTURE 4 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. Exact Lagrangians

Recall a Lagrangian submanifold in a symplectic manifold (M^{2n}, ω) is an *n*dimensional submanifold $L \subset M$ such that $\omega|_L = 0$. There is a related notion of an exact (with respect to λ) Lagrangian which is that $\lambda|_L = df$ for some $f: L \to \mathbb{R}$.

Conjecture 1 (Nearby Lagrangian conjecture). If X is a compact smooth nmanifold then every compact exact Lagrangian in T^*X is Hamiltonian isotopic to the 0-section.

There is a related theorem of Gromov:

Theorem 1 (Gromov). There does not exist a compact exact Lagrangian in \mathbb{R}^{2n} .

Since $H_1(\mathbb{R}^{2n}) = 0$, the definition of "exact Lagrangian" is independent of the choice of the primitive λ .

If $L \subseteq \mathbb{R}^{2n}$ is Lagrangian, we can define a map $\alpha \colon H_1(L) \to \mathbb{R}$ as follows. If γ is an oriented loop in L, then

(1)
$$\alpha\left(\gamma\right) = \int_{D^2} \varphi^* \omega$$

where $\varphi \colon D^2 \to \mathbb{R}^{2n}$ with $\varphi|_{\partial D} = \gamma$. Then L is exact iff $\alpha = 0$.

Example 1. If $\gamma_1, \dots, \gamma_n$ are embedded loops in \mathbb{C} , then $L = \gamma_1 \times \dots \times \gamma_n \subseteq \mathbb{C}^n$ is Lagrangian but not exact, because α sends each of the γ_i to the area that it encloses in \mathbb{C} .

2. Intersections of Lagrangians

Definition 1. A Lagrangian $L \subset M$ is displaceable if there is a Hamiltonian isotopy from L to L' such that $L \cap L' = \emptyset$.

Example 2. Suppose $M = S^2$. A Lagrangian in this manifold is given by a simple closed curve. A Hamiltonian isotopy induces a symplectomorphism, which has to conserve area. So the curve is displaceable iff it divides S^2 into two components of unequal area.

Example 3. Consider a Lagrangian in $M = T^2$, i.e. a simple closed curve. If the homology class of L is trivial, and cuts the torus into pieces of unequal area, then it is displaceable. If the homology class $[L] \neq 0 \in H_1(T^2)$ then L is not displaceable. The reason for this is as follows.

Claim 1. If $\{\varphi_t\}$ is a Hamiltonian isotopy from id to φ , then the area swept out by $\{\varphi_t(L)\}$ is zero i.e.

(2)
$$\int_{L\times[0,1]} \Phi^* \omega = 0$$

for $\Phi \colon L \times [0,1] \to T^2$ sending $(x,t) \mapsto \varphi_t(x)$.

Proof. Exercise.

If L is displaceable, then the region between L and the displaced Lagrangian L' has area area $(U) \in \mathbb{Z}$, but area $(T^2) = 1$ so we have a contradiction.¹

Remark 1. Later we will see that there is a much more systematic way to understand the question of when Lagrangians intersect using Lagrangian Floer homology, which produces an invariant of a pair of Lagrangians up to Hamiltonian isotopy.

Example 4. If $\varphi: (M, \omega) \to (M, \omega)$ then the graph

(3)
$$\Gamma\left(\varphi\right) = \left\{\left(x,\varphi\left(x\right)\right)\right\} \subset \left(M \times M, \left(-\omega,\omega\right)\right)$$

is a Lagrangian. An element of $T_{(p,\varphi(p))}\Gamma$ has the form (v,φ^*v) for $v \in T_pM$. Then we have

(4)
$$(-\omega,\omega)\left(\left(v,\varphi_*v\right),\left(w,\varphi_*w\right)\right) = -\omega\left(v,w\right) + \omega\left(\varphi_*v,\varphi_*w\right) = 0$$

since $\varphi^* \omega = \omega$. Note that the fixed points are in bijection with $\Gamma(\varphi) \cap \Delta$ where $\Delta = \{(x, x)\}$ is the diagonal.

Remark 2. If $L \subset M$ is a Lagrangian submanifold (or more generally an immersion) then ω defines a canonical isomorphism of vector bundles from the normal bundle of L to the cotangent bundle of L:

(5)
$$NL = TM|_L / TL \xrightarrow{\simeq} T^*L$$
.

This gives some restrictions on what sort of Lagrangians are allowed.

Example 5. Let $L \subset \mathbb{R}^4$ be a compact connected Lagrangian. Then $\chi(L) = 0$ as follows.

More generally, if L is a compact Lagrangian surface in some compact oriented symplectic 4-manifold (M^4, ω) , then the self-intersection number is $L \cdot L = -\chi(L)$. This is because the isomorphism $\omega \colon NL \to T^*L$ is actually orientation reversing,² the Euler number of NL is $L \cdot L$, and the Euler number of T^*L is $\chi(L)$.

Example 6. For $M = \mathbb{R}^4$ and L the x_1, x_2 plane, then $NL = y_1, y_2$ plane.

Example 7. If $L \subset \mathbb{R}^4$ is a compact connected Lagrangian then since $\chi(L) = 0$ either $L \simeq T^2$ or $L \simeq$ the Klein bottle. The latter of which is not possible, which was only proved a few years ago.

 $^{^1}$ Professor Hutchings says that if you're ever at a party, and someone asks you what's new in the math world, you should say that they found a new number between 66 and 67 and they're still trying to figure out what's going on with it.

 $^{^2\}mathrm{Professor}$ Hutchings says that he has probably spent half of his career figuring out orientation and signs.

Example 8. For $M = (S^2 \times S^2, (-\omega, \omega))$, the diagonal Δ is a Lagrangian, and also a sphere. The class is

(6)
$$[\Delta] = (1,1) \in H_2(M) = H_2(S^2) \oplus H_2(S^2) .$$

Generally we have

(7)
$$(a_1, b_1) \cdot (a_2, b_2) = -(a_1b_2 + b_1a_2)$$

so in this case we have

(8)
$$[\Delta] \cdot [\Delta] = (1,1) \cdot (1,1) = -2$$
.

Remark 3. Let X^n be a compact oriented smooth manifold, $A \in H_i(X)$, and $B \in H_j(X)$, where i + j = n. In this case we have $A \cdot B \in \mathbb{Z}$. Then the Poincaré duals $A^* \in H^{n-i}(X;\mathbb{Z})$ and $B^* \in H^{n-j}(X;\mathbb{Z})$ satisfy

(9)
$$A \cdot B = \langle A^* \smile B^*, [X] \rangle \ .$$

3. A THEOREM AND SOME PROOFS

Theorem 2 (Weinstein's Lagrangian Tubular Neighborhood Theorem (WLTN)). If $L \subset (M, \omega)$ is a compact Lagrangian then there is a neighborhood of $L \subset U \subset M$, a neighborhood $U' \subset T^*L$ of the zero-section, and a symplectomorphism $\varphi \colon (U, \omega) \to (U', d\lambda)$ which identifies L with the zero-section in a canonical way.

Now we prove Darboux's theorem and WLTN theorem. We will use Moser's trick to prove these.

Proposition 3. Let M be a compact 2n dimensional manifold. Let $\{\omega_t\}_{t\in[0,1]}$ be a smooth 1-parameter family of symplectic forms on M. Then the class $[\omega_t] \in$ $H^2(M; R)$ is constant (so independent of t) iff there exists an isotopy $\{\varphi_t\}_{t\in[0,1]}$ (so $\varphi_t \in \text{Diff}(M)$) with $\varphi_0 = \text{id}_M$ and $\varphi_t^* \omega_t = \omega_0$.

Proof. (\Leftarrow): By homotopy invariance of de Rham cohomology, $\omega_t = (\varphi_t^{-1})^* \omega_0$.

 (\Longrightarrow) : Consider an isotopy $\{\varphi_t\}_{t\in[0,1]}$ generated by a 1-parameter family of vector fields $\{X_t\}$, i.e. $\varphi_0 = \mathrm{id}_M$ and

(10)
$$\frac{d}{dt}\varphi_t\left(x\right) = X_t\left(\varphi_t\left(x\right)\right)$$

So we know the result is true for t = 0, and all we need to show is that

(11)
$$\frac{d}{dt}\varphi_t^*\omega_t = 0 \; .$$

We have that

(12)
$$\frac{d}{dt}\varphi_t^*\omega_t = \varphi_t^*\left(\mathcal{L}_{X_t}\omega_t + \frac{d}{dt}\omega_t\right)$$

(13)
$$= \varphi_t^* \left(d\iota_{X_t} \omega_t + \underline{\iota}_{X_t} d\overline{\omega_t} + \frac{d}{dt} \omega_t \right)$$

where \mathcal{L} is the Lie derivative, and this term goes to zero since ω_t is closed. Since φ_t is a diffeomorphism, what we want is equivalent to

(14)
$$d\iota_{X_t}\omega_t = \frac{-d}{dt}\omega_t \, \, .$$

Now we want to find X_t solving this equation. We know that $\frac{d}{dt}\omega_t$ is exact. So there exists a 1-form α_t with $d\alpha_t = \frac{d}{dt}\omega_t$. Now we have a technical claim which we will prove later:

Claim 2. We can choose the α_t to depend smoothly on t.

Then with this claim, we just need $d\iota_{X_t}\omega_t = -d\alpha_t$, and to show this, it is enough to get $\iota_{X_t}\omega_t = -\alpha_t$. But now there is a unique X_t satisfying this equation because ω_t is nondegenerate. The vector field X_t depends smoothly on t because ω_t and α_t do.