LECTURE 4

MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS

NOTES: JACKSON VAN DYKE

1. Exact Lagrangians

Recall a Lagrangian submanifold in a symplectic manifold $\left(M^{2 n}, \omega\right)$ is an n dimensional submanifold $L \subset M$ such that $\left.\omega\right|_{L}=0$. There is a related notion of an exact (with respect to λ) Lagrangian which is that $\left.\lambda\right|_{L}=d f$ for some $f: L \rightarrow \mathbb{R}$.

Conjecture 1 (Nearby Lagrangian conjecture). If X is a compact smooth n manifold then every compact exact Lagrangian in $T^{*} X$ is Hamiltonian isotopic to the 0-section.

There is a related theorem of Gromov:
Theorem 1 (Gromov). There does not exist a compact exact Lagrangian in $\mathbb{R}^{2 n}$.
Since $H_{1}\left(\mathbb{R}^{2 n}\right)=0$, the definition of "exact Lagrangian" is independent of the choice of the primitive λ.

If $L \subseteq \mathbb{R}^{2 n}$ is Lagrangian, we can define a map $\alpha: H_{1}(L) \rightarrow \mathbb{R}$ as follows. If γ is an oriented loop in L, then

$$
\begin{equation*}
\alpha(\gamma)=\int_{D^{2}} \varphi^{*} \omega \tag{1}
\end{equation*}
$$

where $\varphi: D^{2} \rightarrow \mathbb{R}^{2 n}$ with $\left.\varphi\right|_{\partial D}=\gamma$. Then L is exact iff $\alpha=0$.
Example 1. If $\gamma_{1}, \cdots, \gamma_{n}$ are embedded loops in \mathbb{C}, then $L=\gamma_{1} \times \cdots \times \gamma_{n} \subseteq \mathbb{C}^{n}$ is Lagrangian but not exact, because α sends each of the γ_{i} to the area that it encloses in \mathbb{C}.

2. Intersections of Lagrangians

Definition 1. A Lagrangian $L \subset M$ is displaceable if there is a Hamiltonian isotopy from L to L^{\prime} such that $L \cap L^{\prime}=\emptyset$.

Example 2. Suppose $M=S^{2}$. A Lagrangian in this manifold is given by a simple closed curve. A Hamiltonian isotopy induces a symplectomorphism, which has to conserve area. So the curve is displaceable iff it divides S^{2} into two components of unequal area.
Example 3. Consider a Lagrangian in $M=T^{2}$, i.e. a simple closed curve. If the homology class of L is trivial, and cuts the torus into pieces of unequal area, then it is displaceable. If the homology class $[L] \neq 0 \in H_{1}\left(T^{2}\right)$ then L is not displaceable. The reason for this is as follows.

Claim 1. If $\left\{\varphi_{t}\right\}$ is a Hamiltonian isotopy from id to φ, then the area swept out by $\left\{\varphi_{t}(L)\right\}$ is zero i.e.

$$
\begin{equation*}
\int_{L \times[0,1]} \Phi^{*} \omega=0 \tag{2}
\end{equation*}
$$

for $\Phi: L \times[0,1] \rightarrow T^{2}$ sending $(x, t) \mapsto \varphi_{t}(x)$.
Proof. Exercise.
If L is displaceable, then the region between L and the displaced Lagrangian L^{\prime} has area area $(U) \in \mathbb{Z}$, but area $\left(T^{2}\right)=1$ so we have a contradiction. ${ }^{1}$

Remark 1. Later we will see that there is a much more systematic way to understand the question of when Lagrangians intersect using Lagrangian Floer homology, which produces an invariant of a pair of Lagrangians up to Hamiltonian isotopy.

Example 4. If $\varphi:(M, \omega) \rightarrow(M, \omega)$ then the graph

$$
\begin{equation*}
\Gamma(\varphi)=\{(x, \varphi(x))\} \subset(M \times M,(-\omega, \omega)) \tag{3}
\end{equation*}
$$

is a Lagrangian. An element of $T_{(p, \varphi(p))} \Gamma$ has the form $\left(v, \varphi^{*} v\right)$ for $v \in T_{p} M$. Then we have

$$
\begin{equation*}
(-\omega, \omega)\left(\left(v, \varphi_{*} v\right),\left(w, \varphi_{*} w\right)\right)=-\omega(v, w)+\omega\left(\varphi_{*} v, \varphi_{*} w\right)=0 \tag{4}
\end{equation*}
$$

since $\varphi^{*} \omega=\omega$. Note that the fixed points are in bijection with $\Gamma(\varphi) \cap \Delta$ where $\Delta=\{(x, x)\}$ is the diagonal.

Remark 2. If $L \subset M$ is a Lagrangian submanifold (or more generally an immersion) then ω defines a canonical isomorphism of vector bundles from the normal bundle of L to the cotangent bundle of L :

$$
\begin{equation*}
N L=\left.T M\right|_{L} / T L \stackrel{\simeq}{\rightrightarrows} T^{*} L \tag{5}
\end{equation*}
$$

This gives some restrictions on what sort of Lagrangians are allowed.
Example 5. Let $L \subset \mathbb{R}^{4}$ be a compact connected Lagrangian. Then $\chi(L)=0$ as follows.

More generally, if L is a compact Lagrangian surface in some compact oriented symplectic 4-manifold $\left(M^{4}, \omega\right)$, then the self-intersection number is $L \cdot L=-\chi(L)$. This is because the isomorphism $\omega: N L \rightarrow T^{*} L$ is actually orientation reversing, ${ }^{2}$ the Euler number of $N L$ is $L \cdot L$, and the Euler number of $T^{*} L$ is $\chi(L)$.

Example 6. For $M=\mathbb{R}^{4}$ and L the x_{1}, x_{2} plane, then $N L=y_{1}, y_{2}$ plane.
Example 7. If $L \subset \mathbb{R}^{4}$ is a compact connected Lagrangian then since $\chi(L)=0$ either $L \simeq T^{2}$ or $L \simeq$ the Klein bottle. The latter of which is not possible, which was only proved a few years ago.

[^0]Example 8. For $M=\left(S^{2} \times S^{2},(-\omega, \omega)\right)$, the diagonal Δ is a Lagrangian, and also a sphere. The class is

$$
\begin{equation*}
[\Delta]=(1,1) \in H_{2}(M)=H_{2}\left(S^{2}\right) \oplus H_{2}\left(S^{2}\right) \tag{6}
\end{equation*}
$$

Generally we have

$$
\begin{equation*}
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=-\left(a_{1} b_{2}+b_{1} a_{2}\right) \tag{7}
\end{equation*}
$$

so in this case we have

$$
\begin{equation*}
[\Delta] \cdot[\Delta]=(1,1) \cdot(1,1)=-2 \tag{8}
\end{equation*}
$$

Remark 3. Let X^{n} be a compact oriented smooth manifold, $A \in H_{i}(X)$, and $B \in H_{j}(X)$, where $i+j=n$. In this case we have $A \cdot B \in \mathbb{Z}$. Then the Poincaré duals $A^{*} \in H^{n-i}(X ; \mathbb{Z})$ and $B^{*} \in H^{n-j}(X ; \mathbb{Z})$ satisfy

$$
\begin{equation*}
A \cdot B=\left\langle A^{*} \smile B^{*},[X]\right\rangle \tag{9}
\end{equation*}
$$

3. A THEOREM AND SOME PROOFS

Theorem 2 (Weinstein's Lagrangian Tubular Neighborhood Theorem (WLTN)). If $L \subset(M, \omega)$ is a compact Lagrangian then there is a neighborhood of $L \subset$ $U \subset M$, a neighborhood $U^{\prime} \subset T^{*} L$ of the zero-section, and a symplectomorphism $\varphi:(U, \omega) \rightarrow\left(U^{\prime}, d \lambda\right)$ which identifies L with the zero-section in a canonical way.

Now we prove Darboux's theorem and WLTN theorem. We will use Moser's trick to prove these.

Proposition 3. Let M be a compact $2 n$ dimensional manifold. Let $\left\{\omega_{t}\right\}_{t \in[0,1]}$ be a smooth 1-parameter family of symplectic forms on M. Then the class $\left[\omega_{t}\right] \in$ $H^{2}(M ; R)$ is constant (so independent of t) iff there exists an isotopy $\left\{\varphi_{t}\right\}_{t \in[0,1]}$ (so $\left.\varphi_{t} \in \operatorname{Diff}(M)\right)$ with $\varphi_{0}=\operatorname{id}_{M}$ and $\varphi_{t}^{*} \omega_{t}=\omega_{0}$.

Proof. (\Longleftarrow) : By homotopy invariance of de Rham cohomology, $\omega_{t}=\left(\varphi_{t}^{-1}\right)^{*} \omega_{0}$.
(\Longrightarrow) : Consider an isotopy $\left\{\varphi_{t}\right\}_{t \in[0,1]}$ generated by a 1-parameter family of vector fields $\left\{X_{t}\right\}$, i.e. $\varphi_{0}=\operatorname{id}_{M}$ and

$$
\begin{equation*}
\frac{d}{d t} \varphi_{t}(x)=X_{t}\left(\varphi_{t}(x)\right) \tag{10}
\end{equation*}
$$

So we know the result is true for $t=0$, and all we need to show is that

$$
\begin{equation*}
\frac{d}{d t} \varphi_{t}^{*} \omega_{t}=0 \tag{11}
\end{equation*}
$$

We have that

$$
\begin{align*}
\frac{d}{d t} \varphi_{t}^{*} \omega_{t} & =\varphi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\frac{d}{d t} \omega_{t}\right) \tag{12}\\
& =\varphi_{t}^{*}\left(d \iota_{X_{t}} \omega_{t}+\iota \chi_{t} d \omega_{t}+\frac{d}{d t} \omega_{t}\right) \tag{13}
\end{align*}
$$

where \mathcal{L} is the Lie derivative, and this term goes to zero since ω_{t} is closed. Since φ_{t} is a diffeomorphism, what we want is equivalent to

$$
\begin{equation*}
d \iota_{X_{t}} \omega_{t}=\frac{-d}{d t} \omega_{t} \tag{14}
\end{equation*}
$$

Now we want to find X_{t} solving this equation. We know that $\frac{d}{d t} \omega_{t}$ is exact. So there exists a 1-form α_{t} with $d \alpha_{t}=\frac{d}{d t} \omega_{t}$. Now we have a technical claim which we will prove later:

Claim 2. We can choose the α_{t} to depend smoothly on t.
Then with this claim, we just need $d \iota_{X_{t}} \omega_{t}=-d \alpha_{t}$, and to show this, it is enough to get $\iota_{X_{t}} \omega_{t}=-\alpha_{t}$. But now there is a unique X_{t} satisfying this equation because ω_{t} is nondegenerate. The vector field X_{t} depends smoothly on t because ω_{t} and α_{t} do.

[^0]: ${ }^{1}$ Professor Hutchings says that if you're ever at a party, and someone asks you what's new in the math world, you should say that they found a new number between 66 and 67 and they're still trying to figure out what's going on with it.
 ${ }^{2}$ Professor Hutchings says that he has probably spent half of his career figuring out orientation and signs.

