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1. Moser’s trick

Recall that last lecture we saw that if M is a compact smooth manifold, and
{ωt}t∈[0,1] is a smooth family of symplectic forms on M in the same cohomology

class, then there is an isotopy

(1) {ϕt ∈ Diff (M) | t ∈ [0, 1]}

with ϕ0 = idM and ϕ∗
tωt = ω0. I.e. nothing changes up to isotopy if we continuously

deform the symplectic form without changing the cohomology class. This is proved
using Moser’s trick. There is also a relative version of this.

Theorem 1 (Relative Moser trick). LetM be a smooth manifold, and let X ⊆M be
a compact submanifold. Let ω0 and ω1 be symplectic forms on M such that for each
point p ∈ X, ω0|TpM

= ω1|TpM
. Then there are neighborhoods X ⊂ U0, U1 ⊂ M

and a diffeomorphism ϕ : U0 → U1 such that ϕ|X = idX and ϕ∗ω1 = ω0.

Proof. The following is a standard fact in differential topology: we can choose a
tubular neighborhood U of X and a diffeomorphism U ' N , where N is the normal
bundle, which sends X to the 0-section in the obvious way. Now we want to apply
Moser’s argument in (part of) N . The first thing we need to know is that ω0 and
ω1 are in the same cohomology class. This is true because they do the same thing
on X.

Lemma 2. There is a 1-form α on N such that dα = ω1 − ω0 and α|TpN
= 0 for

all p ∈ X.

Proof. We define a chain homotopy K : Ωi (N) → Ωi−1 (N). Recall this means

(2) Kβ =

∫ 1

0

(ψ∗
t ιVt

β) dt

where for t ∈ [0, 1] we have a map ψt : N → N which just multiplies vectors by t,
and Vt is the vector field given by the derivative of ψt. Now we can calculate the
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following:

dKβ =

∫ 1

0

d (ψ∗
t ιVt

β) dt =

∫ 1

0

(ψ∗
t dιVt

β) dt(3)

K dβ =

∫ 1

0

(ψ∗
t ιVt

dβ) dt(4)

(dK +Kd)β =

∫ 1

0

ψ∗
t (dιVtβ + ιVt dβ) dt =

∫ 1

0

ψ∗
t (LVtβ) dt(5)

but since d/dt (ψ∗
t (−)) = ψ∗

t (LVt (−)), we can write this as

(dK +Kd)β =

∫ 1

0

(
d

dt
ψ∗
t β

)
dt(6)

= ψ∗
1β − ψ∗

0β = β − π∗i∗β(7)

where i : X ↪→ N . To prove the lemma, let α = K (ω1 − ω0). Then the chain
homotopy equation says that

(8) dK (ω1 − ω0) +((((((
Kd (ω1 − ω0) = ω1 − ω0 = dα

since π∗i∗ (ω1 − ω0) = 0, and since these are symplectic forms.
For p ∈ X, we have α|TpN

= 0 because Vt = 0 on X. �

For t ∈ [0, 1], let ωt = (1− t)ω0 + tω1 be a 1-parameter family of closed 2-
forms on M . Note these are not necessarily non-degenerate, so they may not be
symplectic. However, because ω0 = ω1 on the zero section X, it follows that for
some neighborhood of X in N , the ωt are symplectic. For this part of the argument
we really need them to be the same on all of TM . (Before we only needed them to
agree on X.) Now we will do the Moser trick to find an isotopy {ϕt}t∈[0,1] where

ϕt is a diffeomorphism between two neighborhoods of X, ϕ0 = id, and ϕ∗
tωt = ω0.

Moreover, we want ϕ|X = idX . So the condition is:

0 =
d

dt
ϕ∗
tωt = ϕ∗

t

(
LXtωt +

dωt

dt

)
(9)

= ϕ∗
t (dιXt

ωt +����ιXt
dωt + (ω1 − ω0))(10)

= ϕ∗
t (dιXt

ωt + dα)(11)

where Xt = dϕt/dt. It is sufficient to satisfy ιXt
ωt + α = 0. But there is a unique

Xt satisfying this, because ωt is nondegenerate as long as we’re in a sufficiently
small neighborhood of the zero section. We also know Xt = 0 on the zero section,
so if we choose our neighborhood small enough, this will generate an isotopy which
doesn’t move the zero section at all, so ϕ = ϕ1 is the required isotopy. �

2. Darboux’s theorem

Now that we know the relative Moser trick, we are prepared to prove Darboux’s
theorem.

Theorem 3 (Darboux). Let (M,ω) be a symplectic manifold. For any p ∈ M ,
there exist local coordinates x1, · · · , xn, y1, · · · , yn in a neighborhood of p in which

(12) ω =

n∑
i=1

dxi dyi .
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Proof. We apply the relative Moser trick for X = {p}. To set this up, choose
local coordinates x1, · · · , xn, y1, · · · , yn in a neighborhood of p, such that ωp =∑n

i=1 dxi dyi. To do this, we need a linear algebra lemma:

Lemma 4. Let (V, ω) be a symplectic vector space, i.e. V is a finite dimensional
real vector space such that ω : V ⊗V → R is a nondegenerate, antisymmetric pairing.
Then there exists a basis {e1, · · · , en, f1, · · · , fn} for V in which ω (ei, ej) = 0,
ω (fi, fj) = 0, and ω (ei, fj) = δij.

Proof. Let e1 be any nonzero element of V . By non-degeneracy, there exists f1
with ω (e1, f1) = 1. Continuing by induction on the complement:

(13) (Span {e1, f1})ω = {v ∈ V |ω (v, e1) = ω (v, f1) = 0}
gives us such a basis. �

So we can apply this lemma to get a basis {e1, · · · , en, f1, · · · , fn} as above for(
TpM, ω|TpM

)
. Now we can find local coordinates with:

∂

∂xi
= ei ,

∂

∂yi
= fi(14)

at p. So now we have two symplectic forms ω and
∑n

i=1 dxi dyi which agree at p.
Now we can apply the relative Moser trick to get that there exists some neighbor-
hood U1 of p and a diffeomorphism ϕ : U1 → {p} such that

(15) ϕ∗
(∑

dxi dyi

)
= ω

so we are done. �

3. Lagrangian neighborhood theorem

Recall this says the following:

Theorem 5. Let (M,ω) be a symplectic manifold, and L ⊂ M be a compact
Lagrangian submanifold. Then there are two neighborhoods L ⊂ U0 ⊂ M , and
L ⊂ U1 ⊂ T ∗L, and a diffeomorphism ϕ : U0

∼−→ U1 with ϕ|L = idL, and

(16) ϕ∗ ( dλ) = ω .

Proof. This proof will also involve applying the relative Moser trick. To do so, we
need to find neighborhoods U0 of L in M , and U1 in T ∗L, and a diffeomorphism
ϕ : U0 → U1 such that ϕ|L = idL, and for p ∈ L,

(17) ϕ∗ dλ|TpM
= ω|TpM

.

For this purpose, it is enough to find a sub-bundle E ⊂ TM |L such that for
each p ∈ L, ω|E = 0 and TpL ⊕ Ep = TpM . In other words, E is the Lagrangian
complement of TpL in TpM . This is sufficient because then there is a unique bundle

isomorphism ψ : TM |L
∼−→ T (T ∗L)|L such that we have both:

TM |L ' TL⊕ E T (T ∗L)|L = TL⊕ T ∗L .(18)

So ψ : TL → TL canonically sends ψ : TE
'−→ T ∗L, and ψ∗ dλ = ω. That is, we

have a bundle isomorphism TM |L → T (T ∗L)|L which preserves the symplectic
forms. Then there is a diffeomorphism ϕ : U0 → U1 as above, whose derivative
along L equals ϕ.

Given the above, we just need the following linear algebra lemma:
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Lemma 6. Let (V, ω) be a symplectic vector space, and let L ⊂ V be a Lagrangian
subspace. Then there is a canonical retraction from

(19) {complements of L} → {Lagrangian complements of L} .

I.e. there is a canonical way to turn complements of L into Lagrangian ones.

Since the space of complements of L is contractible then, by this lemma, the
space of Lagrangian complements is as well. �
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