LECTURE 5

MATH 242

LECTURE: MICHAEL HUTCHINGS
 NOTES: JACKSON VAN DYKE

1. Moser's trick

Recall that last lecture we saw that if M is a compact smooth manifold, and $\left\{\omega_{t}\right\}_{t \in[0,1]}$ is a smooth family of symplectic forms on M in the same cohomology class, then there is an isotopy

$$
\begin{equation*}
\left\{\varphi_{t} \in \operatorname{Diff}(M) \mid t \in[0,1]\right\} \tag{1}
\end{equation*}
$$

with $\varphi_{0}=\operatorname{id}_{M}$ and $\varphi_{t}^{*} \omega_{t}=\omega_{0}$. I.e. nothing changes up to isotopy if we continuously deform the symplectic form without changing the cohomology class. This is proved using Moser's trick. There is also a relative version of this.

Theorem 1 (Relative Moser trick). Let M be a smooth manifold, and let $X \subseteq M$ be a compact submanifold. Let ω_{0} and ω_{1} be symplectic forms on M such that for each point $p \in X,\left.\omega_{0}\right|_{T_{p} M}=\left.\omega_{1}\right|_{T_{p} M}$. Then there are neighborhoods $X \subset U_{0}, U_{1} \subset M$ and a diffeomorphism $\varphi: U_{0} \rightarrow U_{1}$ such that $\left.\varphi\right|_{X}=\operatorname{id}_{X}$ and $\varphi^{*} \omega_{1}=\omega_{0}$.

Proof. The following is a standard fact in differential topology: we can choose a tubular neighborhood U of X and a diffeomorphism $U \simeq N$, where N is the normal bundle, which sends X to the 0 -section in the obvious way. Now we want to apply Moser's argument in (part of) N. The first thing we need to know is that ω_{0} and ω_{1} are in the same cohomology class. This is true because they do the same thing on X.

Lemma 2. There is a 1 -form α on N such that $d \alpha=\omega_{1}-\omega_{0}$ and $\left.\alpha\right|_{T_{p} N}=0$ for all $p \in X$.

Proof. We define a chain homotopy $K: \Omega^{i}(N) \rightarrow \Omega^{i-1}(N)$. Recall this means

$$
\begin{equation*}
K \beta=\int_{0}^{1}\left(\psi_{t}^{*} \iota_{V_{t}} \beta\right) d t \tag{2}
\end{equation*}
$$

where for $t \in[0,1]$ we have a map $\psi_{t}: N \rightarrow N$ which just multiplies vectors by t, and V_{t} is the vector field given by the derivative of ψ_{t}. Now we can calculate the

[^0]following:
\[

$$
\begin{align*}
d K \beta & =\int_{0}^{1} d\left(\psi_{t}^{*} \iota_{V_{t}} \beta\right) d t=\int_{0}^{1}\left(\psi_{t}^{*} d \iota_{V_{t}} \beta\right) d t \tag{3}\\
K d \beta & =\int_{0}^{1}\left(\psi_{t}^{*} \iota_{V_{t}} d \beta\right) d t \tag{4}\\
(d K+K d) \beta & =\int_{0}^{1} \psi_{t}^{*}\left(d \iota_{V_{t}} \beta+\iota_{V_{t}} d \beta\right) d t=\int_{0}^{1} \psi_{t}^{*}\left(\mathcal{L}_{V_{t}} \beta\right) d t \tag{5}
\end{align*}
$$
\]

but since $d / d t\left(\psi_{t}^{*}(-)\right)=\psi_{t}^{*}\left(\mathcal{L}_{V_{t}}(-)\right)$, we can write this as

$$
\begin{align*}
(d K+K d) \beta & =\int_{0}^{1}\left(\frac{d}{d t} \psi_{t}^{*} \beta\right) d t \tag{6}\\
& =\psi_{1}^{*} \beta-\psi_{0}^{*} \beta=\beta-\pi^{*} i^{*} \beta \tag{7}
\end{align*}
$$

where $i: X \hookrightarrow N$. To prove the lemma, let $\alpha=K\left(\omega_{1}-\omega_{0}\right)$. Then the chain homotopy equation says that

$$
\begin{equation*}
d K\left(\omega_{1}-\omega_{0}\right)+\underline{K} d\left(\omega_{1}-\omega_{0}\right)=\omega_{1}-\omega_{0}=d \alpha \tag{8}
\end{equation*}
$$

since $\pi^{*} i^{*}\left(\omega_{1}-\omega_{0}\right)=0$, and since these are symplectic forms.
For $p \in X$, we have $\left.\alpha\right|_{T_{p} N}=0$ because $V_{t}=0$ on X.
For $t \in[0,1]$, let $\omega_{t}=(1-t) \omega_{0}+t \omega_{1}$ be a 1-parameter family of closed 2 forms on M. Note these are not necessarily non-degenerate, so they may not be symplectic. However, because $\omega_{0}=\omega_{1}$ on the zero section X, it follows that for some neighborhood of X in N, the ω_{t} are symplectic. For this part of the argument we really need them to be the same on all of $T M$. (Before we only needed them to agree on X.) Now we will do the Moser trick to find an isotopy $\left\{\varphi_{t}\right\}_{t \in[0,1]}$ where φ_{t} is a diffeomorphism between two neighborhoods of $X, \varphi_{0}=\mathrm{id}$, and $\varphi_{t}^{*} \omega_{t}=\omega_{0}$. Moreover, we want $\left.\varphi\right|_{X}=\operatorname{id}_{X}$. So the condition is:

$$
\begin{align*}
0=\frac{d}{d t} \varphi_{t}^{*} \omega_{t} & =\varphi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\frac{d \omega_{t}}{d t}\right) \tag{9}\\
& =\varphi_{t}^{*}\left(d \iota_{X_{t}} \omega_{t}+\iota \iota_{X t} d \omega_{t}+\left(\omega_{1}-\omega_{0}\right)\right) \tag{10}\\
& =\varphi_{t}^{*}\left(d \iota_{X_{t}} \omega_{t}+d \alpha\right) \tag{11}
\end{align*}
$$

where $X_{t}=d \varphi_{t} / d t$. It is sufficient to satisfy $\iota_{X_{t}} \omega_{t}+\alpha=0$. But there is a unique X_{t} satisfying this, because ω_{t} is nondegenerate as long as we're in a sufficiently small neighborhood of the zero section. We also know $X_{t}=0$ on the zero section, so if we choose our neighborhood small enough, this will generate an isotopy which doesn't move the zero section at all, so $\varphi=\varphi_{1}$ is the required isotopy.

2. DARBOUX'S THEOREM

Now that we know the relative Moser trick, we are prepared to prove Darboux's theorem.

Theorem 3 (Darboux). Let (M, ω) be a symplectic manifold. For any $p \in M$, there exist local coordinates $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ in a neighborhood of p in which

$$
\begin{equation*}
\omega=\sum_{i=1}^{n} d x_{i} d y_{i} \tag{12}
\end{equation*}
$$

Proof. We apply the relative Moser trick for $X=\{p\}$. To set this up, choose local coordinates $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ in a neighborhood of p, such that $\omega_{p}=$ $\sum_{i=1}^{n} d x_{i} d y_{i}$. To do this, we need a linear algebra lemma:
Lemma 4. Let (V, ω) be a symplectic vector space, i.e. V is a finite dimensional real vector space such that $\omega: V \otimes V \rightarrow \mathbb{R}$ is a nondegenerate, antisymmetric pairing. Then there exists a basis $\left\{e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{n}\right\}$ for V in which $\omega\left(e_{i}, e_{j}\right)=0$, $\omega\left(f_{i}, f_{j}\right)=0$, and $\omega\left(e_{i}, f_{j}\right)=\delta_{i j}$.

Proof. Let e_{1} be any nonzero element of V. By non-degeneracy, there exists f_{1} with $\omega\left(e_{1}, f_{1}\right)=1$. Continuing by induction on the complement:

$$
\begin{equation*}
\left(\operatorname{Span}\left\{e_{1}, f_{1}\right\}\right)^{\omega}=\left\{v \in V \mid \omega\left(v, e_{1}\right)=\omega\left(v, f_{1}\right)=0\right\} \tag{13}
\end{equation*}
$$

gives us such a basis.
So we can apply this lemma to get a basis $\left\{e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{n}\right\}$ as above for $\left(T_{p} M,\left.\omega\right|_{T_{p} M}\right)$. Now we can find local coordinates with:

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}=e_{i}, \quad \frac{\partial}{\partial y_{i}}=f_{i} \tag{14}
\end{equation*}
$$

at p. So now we have two symplectic forms ω and $\sum_{i=1}^{n} d x_{i} d y_{i}$ which agree at p. Now we can apply the relative Moser trick to get that there exists some neighborhood U_{1} of p and a diffeomorphism $\varphi: U_{1} \rightarrow\{p\}$ such that

$$
\begin{equation*}
\varphi^{*}\left(\sum d x_{i} d y_{i}\right)=\omega \tag{15}
\end{equation*}
$$

so we are done.

3. LAGRANGIAN NEIGHBORHOOD THEOREM

Recall this says the following:
Theorem 5. Let (M, ω) be a symplectic manifold, and $L \subset M$ be a compact Lagrangian submanifold. Then there are two neighborhoods $L \subset U_{0} \subset M$, and $L \subset U_{1} \subset T^{*} L$, and a diffeomorphism $\varphi: U_{0} \xrightarrow{\sim} U_{1}$ with $\left.\varphi\right|_{L}=\operatorname{id}_{L}$, and

$$
\begin{equation*}
\varphi^{*}(d \lambda)=\omega \tag{16}
\end{equation*}
$$

Proof. This proof will also involve applying the relative Moser trick. To do so, we need to find neighborhoods U_{0} of L in M, and U_{1} in $T^{*} L$, and a diffeomorphism $\varphi: U_{0} \rightarrow U_{1}$ such that $\left.\varphi\right|_{L}=\mathrm{id}_{L}$, and for $p \in L$,

$$
\begin{equation*}
\left.\varphi^{*} d \lambda\right|_{T_{p} M}=\left.\omega\right|_{T_{p} M} \tag{17}
\end{equation*}
$$

For this purpose, it is enough to find a sub-bundle $\left.E \subset T M\right|_{L}$ such that for each $p \in L,\left.\omega\right|_{E}=0$ and $T_{p} L \oplus E_{p}=T_{p} M$. In other words, E is the Lagrangian complement of $T_{p} L$ in $T_{p} M$. This is sufficient because then there is a unique bundle isomorphism $\psi:\left.\left.T M\right|_{L} \xrightarrow{\sim} T\left(T^{*} L\right)\right|_{L}$ such that we have both:

$$
\begin{equation*}
\left.\left.T M\right|_{L} \simeq T L \oplus E \quad T\left(T^{*} L\right)\right|_{L}=T L \oplus T^{*} L \tag{18}
\end{equation*}
$$

So $\psi: T L \rightarrow T L$ canonically sends $\psi: T E \xrightarrow{\simeq} T^{*} L$, and $\psi^{*} d \lambda=\omega$. That is, we have a bundle isomorphism $\left.\left.T M\right|_{L} \rightarrow T\left(T^{*} L\right)\right|_{L}$ which preserves the symplectic forms. Then there is a diffeomorphism $\varphi: U_{0} \rightarrow U_{1}$ as above, whose derivative along L equals φ.

Given the above, we just need the following linear algebra lemma:

Lemma 6. Let (V, ω) be a symplectic vector space, and let $L \subset V$ be a Lagrangian subspace. Then there is a canonical retraction from
(19) $\quad\{$ complements of $L\} \rightarrow\{$ Lagrangian complements of $L\}$.
I.e. there is a canonical way to turn complements of L into Lagrangian ones.

Since the space of complements of L is contractible then, by this lemma, the space of Lagrangian complements is as well.

[^0]: Date: February 5, 2019.

