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1. Definitions

Contact geometry is meant to be an odd-dimensional version of symplectic ge-
ometry. Let Y be a 2n− 1 dimensional smooth manifold.

Definition 1. A contact form on Y is a 1-form λ on Y such that λ ∧ dλ n−1 6= 0.

The idea is that some version of the top dimensional exterior product of the
form is nonzero. This is the odd-dimensional version of the non-degeneracy of a
symplectic form. Having such a form determines two additional things. First, define
ξ = kerλ ⊂ TY . This is a codimension 1 sub-bundle.1 Note that dλ n−1

∣∣
ξ
6= 0.

Assuming λ 6= 0 this is equivalent to the non-degeneracy in the definition. This
means dλ defines a linear symplectic form on ξp for each p ∈ Y . In particular, ξ is

oriented by ( dλ )
n−1

.

Definition 2. A contact structure is an oriented co-dimension 1 subbundle of TY
such that there exists a contact form λ on Y with kerλ = ξ, and ( dλ )

n−1
agrees

with the orientation on ξ.

By definition any contact form gives rise to a contact structure.

Remark 1. Let λ1 be a contact form. Then λ2 is a contact form which gives rise
to the same contact structure iff there exists f : Y → R \ {0} (need f > 0 if n− 1
is odd) such that λ2 = fλ1.

Proof. ( =⇒ ): By definition, kerλ1 = kerλ2, so λ2 = fλ1 for some non-vanishing
function f : Y → R \ {0}. The orientation condition forces f > 0 for n− 1 odd.

(⇐=): It certainly has the same kernel, so we just need to check that λ2 = fλ1

is a contact form. We can calculate:

λ2 ∧ ( dλ2 )
n−1

= fλ1 ∧ ( df ∧ λ1 + f dλ1 )
n−1

= fnλ1 ∧ ( dλ1 )
n−1 6= 0

which is never zero because λ1 is a contact form and f is nonzero. �

Remark 2. Recall that a codimension 1 distribution ξ is integrable if it is a foliation,
i.e. locally you can choose coordinates x1, · · · , x2n−1 such that

ξ = Span

(
∂

∂x1
, · · · , ∂

∂x2n−1

)
Date: February 7, 2019.
1 This is sometimes called a distribution.
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Theorem 1 (Frobenius). A distribution ξ (of any dimension) is a foliation iff we
have that if V and W are vector fields with V (p) ,W (p) ∈ ξp for each p ∈ Y , then
the Lie bracket [V,W ] (p) ∈ ξp for each p ∈ Y .

Lemma 1. If λ is a non-vanishing 1-form with ξ = kerλ, then ξ is integrable iff
dλ |ξ = 0.

Proof. Let V and W be vector fields with V (p) ,W (p) ∈ ξp for all p. Then we have
the formula that:

dλ (V,W ) = V λ (W )−Wλ (V )− λ ([V,W ]) .

The first terms are 0 since we assumed V and W to be in kerλ. And now we are
done by Frobenius’ theorem. �

A contact structure is what is called “maximally non-integrable” since dλ |ξ is
nondegenerate.

Definition 3. If λ is a contact form, then the Reeb vector field R is the unique
vector field such that dλ (R,−) = 0 and λ (R) = 1.

This is unique because dim ker dλ = 1, and by the non-degeneracy in the defi-
nition, λ is not identically zero on the kernel of dλ .

Warning 1. Multiplying λ by a positive function changes the Reeb vector field.
Not just the normalization, the direction too. We should expect this, because if
something is in the kernel of dλ , we shouldn’t necessarily expect it to be in the
kernel of dfλ = df ∧ λ+ f ∧ dλ .

2. Examples and theorems

Example 1. Take2 Y = R3, λ = dz − y dx . Note that dλ = dx dy which means
λ ∧ dλ = dx dy dz which is nondegenerate. Then

ξ = kerλ = Span

(
∂

∂y
,
∂

∂x
+ y

∂

∂z

)
.

and R = ∂/∂z. These planes look as in fig. 1.

Remark 3. Let γ : [a, b]→ R3 be a curve which projects to a loop γ̄ in R2
x,y. Suppose

that γ′ (t) ∈ ξ for all t. We can consider the difference of the z coordinates:

z (γ (b))− z (γ (a)) =

∫
γ

dz =

∫
γ

y dx =

∫
γ̄

y dx = −Area (γ̄)

so a simple closed curve can never lift to a curve tangent to the contact planes. In
particular, the obstruction is exactly measured by the signed area of the curve. So
if we had a figure 8 with the same amount of area on both sides of the crossing we
could somehow close the curve off in R3 while still staying tangent to ξ. We can
visualize this in fig. 1

Definition 4. If Y 3 is a 3-manifold with a contact structure ξ, a Legendrian knot
in (Y, ξ) is a knot L ⊂ Y such that TL ⊂ ξ.

2Note that some people instead take λ = dz +x dy . Professor Hutchings says such people are
heretics.
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Figure 1. Here we show ξ for R3 where λ = dz +x dy . In red we
show the sense in which simple closed curves in the plane fail to
lift to to curves in R3 which are everywhere tangent to the contact
planes.

A closed curve γ̄ in the x, y plane lifts to a Legendrian knot in
(
R3, dz − y dx

)
iff Area (γ̄) = 0 and some additional area conditions from the crossings.3

Remark 4. Projecting to the x, y plane and considering its area is different from
the front projection, which would instead be projecting the knot to the x, z plane
so the slope of the projection somehow tells us the y coordinate.

Question 1. Classify Legendrian knots in
(
R3, λstd

)
up to Legendrian isotopy. In

particular, how different are Legendrian knots from smooth knots?

Note that there is an obvious map from Legendrian knots modulo Legendrian
isotopy to smooth knots modulo smooth isotopy which is surjective. It is however
not injective. There are some simple invariants which can show certain Legendrian
knots are not Legendrian isotopic. The first of which is the rotation number.
Consider for example the figure eight presentation of the unknot. This has rotation
number 0. If we add an extra turn, the image under the map to smooth knots
is still the unknot, however it has rotation number 1, so these are not related by
Legendrian isotopy. There is also the Thurston-Bennequin invariant. It was once
thought that if this and the rotation number both agreed, then two Legendrian
knots were Legendrian isotopic. It was however discovered using Legendrian contact
homology that this is not the case.

Example 2. Note that there is a standard contact form on R2n−1 given by

λstd = dz −
n−1∑
i=1

yi dxi

where the coordinates are given by x1, · · · , xn−1, y1, · · · , yn−1, z. Then

dλstd =

n−1∑
i=1

dxi dyi

which means

λstd ∧ ( dλstd )
n−1

= (n− 1)! dx1 dy1 · · · dxn−1 dyn−1 dz

3The idea is that if we take one half of the curve split at a crossing then it has to have nonzero
signed area.
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and again R = ∂/∂z.

The following example should motivate one to care about contact structures.

Example 3. Define a 1-form λ0 on R2n by

λ0 =
1

2

n∑
i=1

(xi dyi − yi dxi ) .

Then the claim is as follows.

Claim 1. Let Y be a star-shaped hypersurface in R2n, i.e. it is transverse to the
radial vector field

ρ =
1

2

n∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
.

Then we have both of the following:

(1) λ = λ0|Y is a contact form on Y .
(2) R is proportional to XH for any Hamiltonian H : R2n → R having Y as a

regular level set.

Proof. Observe that λ0 = ιρωstd. So we want to show that λ = ιρωstd|Y is a
contact form. First note that λ|Y 6= 0 because ρ t Y . [ρ (y) ∈ ker (ιρωstd (y)), and
if TyY ⊂ ker (ιρωstd (y)) then ker (ιρωstd) = TyR2n which is a contradiction since
ρ 6= 0, and ωstd is nondegenerate.] To show that λ is a contact form, we need to

check that ( dλ )
n−1
∣∣∣
kerλ

is nondegenerate. This follows because dλ = ωstd|Y and

(ωstd|Y )
n−1 6= 0.

The following is the more general form of this fact:

Theorem 2. In a symplectic manifold (M,ω), let Y be a hypersurface. Let ρ be a
vector field in a neighborhood of Y such that ρ t Y and dιρω = ω. (Note this is
what is called a Liouville vector field.) Then λ = (ιρω)|Y is a contact form on Y .

Recall that if y ∈ Y , then ω|TyY
has a 1-dimensional kernel, call it Ly, and

XH (y) is a generator of Ly. Observe that R ∈ Ly because of the following. We
know dλ (R,−) = 0, but dλ = ω|Y , so both the Hamiltonian vector field and the
Reeb vector field have to be in the same one-dimensional space. �


	1. Definitions
	2. Examples and theorems

