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1. Contact manifolds

Recall a contact form λ is a 1-form such that λ ∧ ( dλ )
n−1 6= 0. This gives rise

to the contact structure ξ = kerλ and a Reeb vector field R which is characterized
by dλ (R, ·) = 0 and λ (R) = 1.

1.1. Why we care. Let Y be a compact smooth hypersurface in a symplectic
manifold

(
M2n, ω

)
.

Definition 1. Y is contact type if there exists a contact form λ on Y such that
dλ = ω|Y .

Note that any hypersurface Y in (M,ω) has a characteristic foliation L which is

a rank 1 foliation with Ly = ker
(
ω|TyY

)
. If H : M → R is a Hamiltonian, with Y

as a regular level set, then for y ∈ Y we have XH (y) ∈ Ly.

Remark 1. If Y is contact-type then the Reeb vector field R has the property that
R (y) ∈ Ly.

Note that this implies that periodic orbits of R correspond to periodic orbits of
XH . So if you’re interested in one, you’re interested in the other.

Conjecture 1 (Weinstein). If Y 2n−1 is a closed manifold, then every contact form
on Y has a Reeb orbit.

In the 70s, Rabinowitz proved this for star-shaped hypersurfaces in R2n In the
80s, Viterbo proved this for contact-type compact hypersurfaces in R2n. In 2006,
Taubes proved this for all closed 3-manifolds. This is an open question for higher
dimensions.

2. Liouville vector fields

Recall that if (M,ω) is symplectic, a Liouville vector field on M is a vector field
X such that LXω = dιXω = ω.

Example 1. Let M = R2n with the standard form

ω =

n∑
i=1

dxi dyi
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then the Liouville vector field is just the radial one:

X =
1

2

n∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
.

Indeed,

ιXω =
1

2

n∑
i=1

(xi dyi − yi dxi )

which clearly satisfies dιXω = ω.

Lemma 1. A compact hypersurface Y ⊂ (M,ω) is contact type iff there exists a
Liouville vector field X in a neighborhood of Y with X t Y (e.g. a star-shaped
hypersurface in R2n).

Proof. (⇐=): Define λ = ιXω|Y . The definition implies that dλ = ω|Y . We need
to check that λ is a contact form. Let y ∈ Y and v ∈ Ly \ {0}. Then ω (V,X) 6= 0
In particular, ω (V,X) = −λ (V ). Then kerλ|TyY

is the symplectic complement of

Span (V,X). This is because if w ∈ ker
(
λ|TyY

)
then

ω (W,X) = −ιXω (W ) = −λ (W ) = 0 .

It follows that dλ is nondegenerate on ker
(
λ|TyY

)
. This, along with the above

calculation that ω (V,X) = −λ (V ), is enough to see that λ ∧ ( dλ )
n−1 6= 0. �

Before we finish the proof, we need another definition.

Definition 2. Let (Y, λ) be a contact manifold. Define the symplectization to be
the symplectic manifold

(Rs × Y, ω = d (esλ)) .

We now check this is symplectic. First we have that dω = 0. Note that

ω = es ( ds ∧ λ dλ )

so we have that
ωn = nens ds ∧ λ ∧ ( dλ )

n−1︸ ︷︷ ︸
nonzero on Y

6= 0 .

This is the volume form, so we should think of this as somehow telling us that this
thing blows up in the s direction.

Remark 2. {s}×Y is a contact type hypersurface for any value s ∈ R. The contact
form is esλ.

Continued proof of lemma 1. ( =⇒ ): Suppose λ is a contact form on Y with dλ =
ω|Y . Then we need to find a transverse Liouville vector field of X in a neighborhood

of Y . Choose a section X̂ of TM |Y such that

X̂ ∈ (kerλ)
ω

ω
(
X̂, R

)
= 1 .

Extend X̂ arbitrarily to a non-vanishing vector field of Y . Note that X̂ t Y . We
can choose this in a neighborhood to be identified with (−1, 1)s × Y such that
Y ↔ {0} × Y .

On this neighborhood we have a symplectic form ω̂ = d (esλ) and X̂ = ∂/∂s is
a Liouville vector field for ω̂. Note that the point here is that along Y , ω̂ = ω.
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Recall that the relative Moser theorem implies that after shrinking neighbor-
hoods we get a diffeomorphism ϕ from a neighborhood of Y in M to a neighbor-
hood of {0} × Y in (−1, 1)× Y such that ϕ|Y = id|Y and ϕ∗ω̂ = ω. Then ϕ∗X̂ is
a Liouville vector field for ω which is transverse to Y . �

Remark 3. There exist compact hypersurfaces in R2n for n > 1 (C2 smooth if
n = 2, C∞ if n > 2) such that XH (or L) has no periodic orbit.

It follows from Viterbo’s theorem that these are not contact type.

Question 1. Is every embedded S3 in R4 isotopic to a contact type hypersurface?

This would be a big deal to answer, since it would imply the Schoenflies conjec-
ture, which says that every embedded S3 in R4 bounds a ball.

3. Examples of contact manifolds

Example 2. Let Z be a smooth manifold with a Riemannian metric g. Take

T = ST ∗Z =
{

(y, v) ∈ T ∗Y | ‖v‖g = 1
}
,

the unit cotangent bundle. Recall that T ∗Z is symplectic where

λ =

n∑
i=1

pi dqi

in local coordinates and ω = dλ . The Liouville vector field is

X =

n∑
i=1

pi
∂

∂pi
.

So X t Y , and therefore λ|Y is a contact form, and R is the geodesic flow.

Example 3. More generally, if Y ⊂ T ∗Z is a hypersurface which is “fiberwise
star-shaped”, i.e. transverse to

X =

n∑
i=1

pi
∂

∂pi
,

then Y is contact type.

Example 4. Let
Y = T 3 = (R/2πZ)

3

with coordinates x, y, z. Take

λ = (cos z) dx + (sin z) dy .

We check this is a contact form by calculating

dλ = − sin z dz dx + cos z dz dy

and
λ ∧ dλ = cos2 dx dz dy − sin2 z dy dz dx = − dx dy dz .

One might think this should be positive, but it isn’t.1 The Reeb flow is:

R = cos z
∂

∂x
+ sin z

∂

∂y
.

1Professor Hutchings offers a cautionary tale about signs: there was once a theorem relating
the cohomology of cotangent bundles to loop spaces. There were three independent proofs of this,

but they were all wrong because of a sign.
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We could get a variant of this example by setting:

λ = (cosnz) dx + (sinnz) dy .

Fact 1. The contact structures for different n are not contactomorphic.

Example 5 (Boothby-Wang manifolds/pre-quantization spaces). This is a way to
start with a symplectic manifold, and create a contact manifold with one higher
dimension. Let

(
M2n, ω

)
be a closed symplectic manifold. Suppose − [ω] / (2π) ∈

H2 (M ;R) is the image of an integral class e ∈ H2 (M ;Z). Let Y 2n+1 be the
principle S1-bundle over M with Euler class e.

First we review these concepts. Let B be any smooth manifold. Recall a principal
S1-bundle over B consists of

• a smooth manifold E
• a map ρ : E → B
• an S1 action on E

such that:

• ρ is surjective
• S1 preserves the fibers of ρ
• S1 acts freely and transitively on each fiber,
• for each point in B, we can find a neighborhood U ⊆ B such that

ρ−1 (U) U × S1

U

'
ρ

π
.

Remark 4. We could also define a principle G bundle for any Lie group G, but this
gets a bit tricky to deal with when G is nonabelian, so we won’t worry about this
for now.

So consider such a bundle
S1 E

B

.

Definition 3. A connection on a principal S1-bundle is a 1-form A on E such that

• A is invariant under the S1 action
• A (V ) = 1 where V is the derivative of the S1 action.

The point of defining this, is that a connection is equivalent to an S1-invariant
splitting of the short exact sequence

0 Teρ
−1 (b) TeE TbB 0

ρ∗A

horizontal lift

for b ∈ B, e ∈ ρ−1 (b). We call the first term the vertical subspace. We want to
somehow consider a horizontal subspace, but there is no canonical way to make
this choice, so such a splitting is somehow a choice of such a subspace. This is
equivalent to the connection A.

Then the point here will be that an appropriate connection is a contact form.
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