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1. S1-bundles

Let B be a CW-complex.

Definition 1. An S1 bundle over B is a continuous surjective map π : E → B
such that for each p ∈ B there is a neighborhood U of p such that

ρ−1 (U) U × S1

U

'
π .

Remark 1. E is trivial, i.e. E = B × S1, iff it has a section s : B → E such that
π ◦ s = idB .

Definition 2. An oriented S1-bundle is an S1-bundle in which each fiber has an
orientation which depends continuously on p.

1.1. Euler class. The Euler class is a cohomology class e (E) ∈ H2 (B,Z) associ-
ated to the bundle E. In particular, this is an obstruction to E being trivial, i.e.
an obstruction to finding a section.

To see this, we will attempt to find a section s : B → E one cell at a time. Over
the 0-skeleton we have no problem, since S1 6= ∅. The bundle over the 1-cell is no
problem because S1 is connected. In particular, the 1-cell can be identified with
an interval, and since S1 is connected, we get a path living over it. Now we try to
extend it over the 2-skeleton. For a 2-cell σ : D2 → B we have σ∗E ' D2×S1. And
now we have an obstruction o (σ) ∈ π1

(
S1
)

= Z. We can think of o ∈ C2 (B,Z).

Lemma 1. • δo = 0
• If o′ comes from a different choice of section over the 1-skeleton, then o′ −
o = δ (something).

The conclusion is that we have a well-defined cohomology class in H2 (B;Z).

So from the first item we have that if we have a 3-cell, the sum of the obstructions
for the boundary 2-cells is 0. By construction, if e (E) = 0 then E certainly has a
section over the 2-skeleton. As it turns out, this is also equivalent to E having a
section since πk

(
S1
)

= 0 for k > 1.
We can also show that the Euler class, viewed as a map

e :

{
oriented S1-bundles over B

}
isomorphism

'−→ H2 (B,Z) ,

is an isomorphism.
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1.2. Principal S1-bundles. Recall a principal S1 bundle
E

B

ρ is an S1-bundle

such that S1 acts freely and transitively on the fibers. Write V for the derivative
of the S1 action, i.e. a vector field on E tangent to the fibers.

Also recall that a connection on E is a real-valued 1-form A on E such that:

• A is invariant under the S1 action
• A (V ) = 1

This is equivalent to splitting the SES:

0 Teρ
−1 (b) = R TeE TbB 0

ρ∗
A

horizontal lift

for b ∈ B and e ∈ E.
So let A be a connection. S1 invariance implies the Lie derivative LVA = 0. By

Cartan’s formula this says:

0 = LVA = d ιVA︸︷︷︸
=1

+ιv dA = ιV dA .

This together with S1-invariance implies that there exists a 2-form ω on B such that
dA = ρ∗ω. If b ∈ B and X1, X2 ∈ TbB, then pick e ∈ ρ−1 (b) and X̃1, X̃2 ∈ TeE
with ρ∗X̃1 = X1, ρ∗X̃2 = X2. Then define

ω (X1, X2) = dA
(
X̃1, X̃2

)
.

Now we need to check this is well defined. This does not depend on X̃1 and X̃2

since ιV dA = 0. This does not depend on E because dA is S1-invariant. This is
known as the curvature of the connection A.

For the trivial bundle B × S1, we can pull A back from S1 to get what is called
the trivial connection.

Observe that dω = 0. This is because dA = ρ∗ω and

0 = ddA = dρ∗ω = ρ∗ dω

which implies dω = 0 since ρ is surjective on tangent vectors. This means that ω
defines a cohomology class [ω] ∈ H2 (B,R).

Lemma 2. This cohomology class does not depend on the choice of connection.

The punchline is the following theorem:

Theorem 1.

− [ω]

2π
∈ H2 (B;R)

is the image of the Euler class e ∈ H2 (B;Z) under the map H2 (B,Z)→ H2 (B,R).

In short:

[ω] = −2πe .

Proof (for the case of B a surface). Assume B is a compact, connected, and ori-
ented surface. Let p ∈ B be the center of a 2-cell D in a triangulation. We
want to think of D as a small disk. We can find a section s : B \ intD → E
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where E|D ' D × S1 and s|∂D : ∂D = S1 → S1 which represents the class

e (E) ∈ π1
(
S1
)

= Z. Identifying H2 (B;R) = R we have

[ω] =

∫
B

ω ≈
∫
B\intD

ω .

Recall dA = ρ∗ω. For a section s,

s∗ dA = s∗ρ∗ω = (ρ ◦ s)∗ ω = ω

so ∫
B\intD

ω =

∫
B\intD

s∗ dA =

∫
B\intD

ds∗A = −
∫
∂D

s∗A

by Stokes’ theorem. Then we get that

−
∫
∂D

S∗A ≈ −2πwind (S|∂D) = −2πe

and in the limit as the disk goes to 0, the approximations cancel. �

2. Contact manifolds

Let
(
M2n, ω

)
be a compact symplectic manifold. Suppose there exists e ∈

H2 (X;Z) such that [ω] = −2πe. Let
E

M

ρ be a principal S1-bundle over M with

Euler class e. Let A be a connection 1-form with curvature ω. We can find such
things by the following exercises:

Exercise 1. Show we can always construct an S1-bundle with a given Euler class.

Exercise 2. Consider a connection A with curvature ω. Then prove we can adapt A
such that the corresponding curvature is any other 2-form in the same cohomology
class of ω.

Then A is a contact form on E. To see this we need to check that

A ∧ ( dA )
n

= A ∧ ρ∗ωn

is nonzero, but this follows from the fact that A is nonzero on V , and ωn is nonzero
on B. Then the Reeb vector field is just R = V . This is because by definition we
have dA (R, ·) = 0 and A (V ) = 1 as desired. Therefore every fiber is a Reeb orbit.
These examples are called pre-quantization spaces or Boothby-Wang manifolds.

Remark 2. If E is an S1 bundle over a surface B, this is very different from the
canonical contact form on the unit cotangent bundle ST ∗B.

2.1. Some lemmas.

Lemma 3 (Darboux for contact forms). For any contact form λ on Y 2n+1 and
p ∈ Y , there are local coordinates around p in which

(1) λ = dz −
n∑
i=1

yi dxi .
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Proof. By some linear algebra, one can choose local coordinates such that (1) holds
at p. Then let λ0 be the standard contact form in these coordinates, and λ1 = λ.
So we want to pull λ1 back to λ0.

Let λt = (1− t)λ0 + tλ1. Note this is a contact form near p. Now we want
to do the Moser trick again. We want a family of diffeomorphisms ϕt from some
neighborhood of p to some neighborhood of p, with ϕ∗tλt = λ0 for t ∈ [0, 1], ϕ0 = id,
and ϕt (p) = p for all t. So we want to solve for a vector field Xt which corresponds
to the {ϕt}. So we need

0 =
d

dt
ϕ∗tλt = ϕ∗t

(
dλt
dt

+ LXtλt

)
= ϕ∗t

(
dλt
dt

+ dιXtλt + ιXt dλt

)
.

We know that Xt = ftRt + Yt where Rt is the Reeb vector field for λt, for some ft
and Yt which is in ξt = ker (λt). So we just need to solve for these. We need

dλt
dt

+ dft + ιYt
dλt = 0

and now we can plug in Rt to get

dλt
dt
Rt +Rtft = 0

and now we can solve for ft as long as our neighborhood is small enough that Rt
has no closed orbits. Then we can solve for λt by non-degeneracy of dλt . �
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