LECTURE 8 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. S^1 -BUNDLES

Let B be a CW-complex.

Definition 1. An S^1 bundle over B is a continuous surjective map $\pi : E \to B$ such that for each $p \in B$ there is a neighborhood U of p such that

Remark 1. E is trivial, i.e. $E = B \times S^1$, iff it has a section $s : B \to E$ such that $\pi \circ s = \mathrm{id}_B$.

Definition 2. An oriented S^1 -bundle is an S^1 -bundle in which each fiber has an orientation which depends continuously on p.

1.1. Euler class. The *Euler class* is a cohomology class $e(E) \in H^2(B, \mathbb{Z})$ associated to the bundle E. In particular, this is an obstruction to E being trivial, i.e. an obstruction to finding a section.

To see this, we will attempt to find a section $s: B \to E$ one cell at a time. Over the 0-skeleton we have no problem, since $S^1 \neq \emptyset$. The bundle over the 1-cell is no problem because S^1 is connected. In particular, the 1-cell can be identified with an interval, and since S^1 is connected, we get a path living over it. Now we try to extend it over the 2-skeleton. For a 2-cell $\sigma: D^2 \to B$ we have $\sigma^* E \simeq D^2 \times S^1$. And now we have an obstruction $\mathfrak{o}(\sigma) \in \pi_1(S^1) = \mathbb{Z}$. We can think of $\mathfrak{o} \in C^2(B,\mathbb{Z})$.

Lemma 1. • $\delta \mathfrak{o} = 0$

- If o' comes from a different choice of section over the 1-skeleton, then o' o = δ (something).
- The conclusion is that we have a well-defined cohomology class in $H^2(B;\mathbb{Z})$.

So from the first item we have that if we have a 3-cell, the sum of the obstructions for the boundary 2-cells is 0. By construction, if e(E) = 0 then E certainly has a section over the 2-skeleton. As it turns out, this is also equivalent to E having a section since $\pi_k(S^1) = 0$ for k > 1.

We can also show that the Euler class, viewed as a map

$$e: \frac{\{\text{oriented } S^1\text{-bundles over } B\}}{\text{isomorphism}} \xrightarrow{\simeq} H^2(B, \mathbb{Z}) \ ,$$

is an isomorphism.

Date: February 14, 2019.

1.2. **Principal** S^1 -bundles. Recall a principal S^1 bundle $\begin{array}{c} E \\ \downarrow \rho \\ B \end{array}$ is an S^1 -bundle B

such that S^1 acts freely and transitively on the fibers. Write V for the derivative of the S^1 action, i.e. a vector field on E tangent to the fibers.

Also recall that a *connection* on E is a real-valued 1-form A on E such that:

- A is invariant under the S^1 action
- A(V) = 1

This is equivalent to splitting the SES:

$$0 \longrightarrow T_e \rho^{-1}(b) \stackrel{\swarrow}{=} \mathbb{R} \stackrel{\longrightarrow}{\longrightarrow} T_e E \stackrel{\rho_*}{\underset{\text{horizontal lift}}{\longrightarrow}} T_b B \longrightarrow 0$$

for $b \in B$ and $e \in E$.

So let A be a connection. S^1 invariance implies the Lie derivative $\mathcal{L}_V A = 0$. By Cartan's formula this says:

$$0 = \mathcal{L}_V A = d \underbrace{\iota_V A}_{=1} + \iota_v dA = \iota_V dA .$$

This together with S^1 -invariance implies that there exists a 2-form ω on B such that $dA = \rho^* \omega$. If $b \in B$ and $X_1, X_2 \in T_b B$, then pick $e \in \rho^{-1}(b)$ and $\tilde{X}_1, \tilde{X}_2 \in T_e E$ with $\rho_* \tilde{X}_1 = X_1, \rho_* \tilde{X}_2 = X_2$. Then define

$$\omega\left(X_1, X_2\right) = dA\left(\tilde{X}_1, \tilde{X}_2\right) \; .$$

Now we need to check this is well defined. This does not depend on \tilde{X}_1 and \tilde{X}_2 since $\iota_V dA = 0$. This does not depend on E because dA is S^1 -invariant. This is known as the *curvature* of the connection A.

For the trivial bundle $B \times S^1$, we can pull A back from S^1 to get what is called the trivial connection.

Observe that $d\omega = 0$. This is because $dA = \rho^* \omega$ and

$$0 = ddA = d\rho^* \omega = \rho^* d\omega$$

which implies $d\omega = 0$ since ρ is surjective on tangent vectors. This means that ω defines a cohomology class $[\omega] \in H^2(B, \mathbb{R})$.

Lemma 2. This cohomology class does not depend on the choice of connection.

The punchline is the following theorem:

Theorem 1.

$$-\frac{\left[\omega\right]}{2\pi}\in H^{2}\left(B;\mathbb{R}
ight)$$

is the image of the Euler class $e \in H^2(B; \mathbb{Z})$ under the map $H^2(B, \mathbb{Z}) \to H^2(B, \mathbb{R})$.

In short:

$$[\omega] = -2\pi e \; .$$

Proof (for the case of B *a surface).* Assume B is a compact, connected, and oriented surface. Let $p \in B$ be the center of a 2-cell D in a triangulation. We want to think of D as a small disk. We can find a section $s : B \setminus \text{int } D \to E$

where $E|_D \simeq D \times S^1$ and $s|_{\partial D} : \partial D = S^1 \to S^1$ which represents the class $e(E) \in \pi_1(S^1) = \mathbb{Z}$. Identifying $H^2(B; \mathbb{R}) = \mathbb{R}$ we have

$$[\omega] = \int_B \omega \approx \int_{B \setminus \operatorname{int} D} \omega$$

Recall $dA = \rho^* \omega$. For a section s,

$$s^* dA = s^* \rho^* \omega = (\rho \circ s)^* \omega = \omega$$

 \mathbf{so}

$$\int_{B\setminus \operatorname{int} D} \omega = \int_{B\setminus \operatorname{int} D} s^* \, dA = \int_{B\setminus \operatorname{int} D} ds^* A = -\int_{\partial D} s^* A$$

by Stokes' theorem. Then we get that

$$-\int_{\partial D} S^* A \approx -2\pi \operatorname{wind} \left(\left. S \right|_{\partial D} \right) = -2\pi e$$

and in the limit as the disk goes to 0, the approximations cancel.

2. Contact manifolds

Let (M^{2n}, ω) be a compact symplectic manifold. Suppose there exists $e \in H^2(X; \mathbb{Z})$ such that $[\omega] = -2\pi e$. Let $\begin{array}{c} E \\ \downarrow \rho \\ \downarrow \rho \end{array}$ be a principal S^1 -bundle over M with

Euler class e. Let A be a connection 1-form with curvature ω . We can find such things by the following exercises:

Exercise 1. Show we can always construct an S^1 -bundle with a given Euler class.

Exercise 2. Consider a connection A with curvature ω . Then prove we can adapt A such that the corresponding curvature is any other 2-form in the same cohomology class of ω .

Then A is a contact form on E. To see this we need to check that

$$A \wedge (dA)^n = A \wedge \rho^* \omega^n$$

is nonzero, but this follows from the fact that A is nonzero on V, and ω^n is nonzero on B. Then the Reeb vector field is just R = V. This is because by definition we have $dA(R, \cdot) = 0$ and A(V) = 1 as desired. Therefore every fiber is a Reeb orbit. These examples are called pre-quantization spaces or Boothby-Wang manifolds.

Remark 2. If E is an S^1 bundle over a surface B, this is very different from the canonical contact form on the unit cotangent bundle ST^*B .

2.1. Some lemmas.

Lemma 3 (Darboux for contact forms). For any contact form λ on Y^{2n+1} and $p \in Y$, there are local coordinates around p in which

(1)
$$\lambda = dz - \sum_{i=1}^{n} y_i dx_i \; .$$

Proof. By some linear algebra, one can choose local coordinates such that (1) holds at p. Then let λ_0 be the standard contact form in these coordinates, and $\lambda_1 = \lambda$. So we want to pull λ_1 back to λ_0 .

Let $\lambda_t = (1-t)\lambda_0 + t\lambda_1$. Note this is a contact form near p. Now we want to do the Moser trick again. We want a family of diffeomorphisms φ_t from some neighborhood of p to some neighborhood of p, with $\varphi_t^*\lambda_t = \lambda_0$ for $t \in [0, 1]$, $\varphi_0 = id$, and $\varphi_t(p) = p$ for all t. So we want to solve for a vector field X_t which corresponds to the $\{\varphi_t\}$. So we need

$$0 = \frac{d}{dt}\varphi_t^*\lambda_t = \varphi_t^*\left(\frac{d\lambda_t}{dt} + \mathcal{L}_{X_t}\lambda_t\right) = \varphi_t^*\left(\frac{d\lambda_t}{dt} + d\iota_{X_t}\lambda_t + \iota_{X_t}d\lambda_t\right) \ .$$

We know that $X_t = f_t R_t + Y_t$ where R_t is the Reeb vector field for λ_t , for some f_t and Y_t which is in $\xi_t = \ker(\lambda_t)$. So we just need to solve for these. We need

$$\frac{d\lambda_t}{dt} + df_t + \iota_{Y_t} d\lambda_t = 0$$

and now we can plug in R_t to get

4

$$\frac{d\lambda_t}{dt}R_t + R_t f_t = 0$$

and now we can solve for f_t as long as our neighborhood is small enough that R_t has no closed orbits. Then we can solve for λ_t by non-degeneracy of $d\lambda_t$.