LECTURE 9 MATH 242

LECTURE: PROFESSOR MICHAEL HUTCHINGS NOTES: JACKSON VAN DYKE

1. More contact structures

Lemma 1. Let Y be a compact 2n - 1 dimensional manifold. Let $\{\xi_t\}_{t \in [0,1]}$ be a smooth family of contact structures., i.e. $\xi_t = \ker(\lambda_t)$ where $\{\lambda_t\}$ is a smooth family of contact forms. Then there exists an isotopy $\{\varphi_t\}_{t \in [0,1]}$, for $\varphi_t \in \text{Diff}(Y)$, $\varphi_0 = \text{id}_R$ such that $\varphi_t^* \xi_t = \xi_0$ for each t, i.e. $\varphi_t^* \lambda_t = f_t \lambda_t$ for smooth $f_t : Y \to \mathbb{R}^{\geq 0}$.

Remark 1. We cannot expect to get an isotopy $\varphi_t^* \lambda_t = \lambda_0$, because this would imply that the dynamics would be the same under φ_t , but this can't be the case. E.g. recall that $\partial E(a, b)$ (with the restriction of the standard form on \mathbb{R}^4) has simple Reeb orbits of period a, b, and no others if $a/b \notin \mathbb{Q}$. If there exists a diffeomorphism with $\varphi^* \lambda_{a,b} = \lambda_{a',b'}$ then the Reeb orbits for $\lambda_{a,b}$ have the same period as the Reeb orbits for $\lambda_{a',b'}$.

Proof. We want to find φ_t and f_t with

$$\varphi_t^* \lambda_t = f_t \lambda_0 \; .$$

Now take the derivative of both sides to get:

$$\frac{d}{dt}\varphi_t^*\lambda_t = \left(\frac{d}{dt}f_t\right)\lambda_0$$

but the LHS can be written:

$$\frac{d}{dt}\varphi_t^*\lambda_t = \varphi_t^*\left(\frac{d\lambda_t}{dt} + \mathcal{L}_{X_t}\lambda_t\right) = \left(\frac{d}{dt}f_t\right)\left(\frac{1}{f_t}\varphi_t^*\lambda_t\right)$$

and now we need to solve for this X_t . Rewrite this as

$$\varphi_t^* \left(\frac{d\lambda_t}{dt} + \mathcal{L}_{X_t} \lambda_t \right) = \varphi_t^* \left(g_t \lambda_t \right) \qquad \text{where} \qquad \varphi_t^* g_t = \frac{1}{f_t} \frac{df_t}{dt} \ .$$

So we just need to solve:

$$\frac{d\lambda_t}{dt} + \mathcal{L}_{X_t}\lambda_t = g_t\lambda_t \; .$$

First we can rewrite the Lie derivative to get:

$$\frac{d\lambda_t}{dt} + d\iota_{X_t} \lambda_t + \iota_{X_t} d\lambda_t = g_t \lambda_t$$

Let us take $X_t(p) \in \xi_t(p)$ for each p, so $\lambda_t(X_t) = 0$, so the second term is 0. Now we can uniquely decompose

$$\frac{d\lambda_t}{dt} = g_t \lambda_t + h_t$$

Date: February 19, 2019.

where h_t annihilates R_t , i.e. $g_t = d\lambda/dt (R_t)$. We need $\iota_{X_t} d\lambda_t = h_t$. But we can uniquely solve for X_t by non-degeneracy of $d\lambda_t$ on ξ_t . Now we can solve

$$\varphi_t^* g_t = \frac{d}{dt} \log\left(f_t\right)$$

to get f_t .

1.1. Contact structures on 3-manifolds. Let ξ be a contact structure on Y^3 .

Definition 1. ξ is called *overtwisted* if there exists an embedded disk $D \subset Y$ such that $\xi|_{\partial D} = TD|_{\partial D}$. Such a disk is called an *overtwisted disk*.

Example 1. On \mathbb{R}^3 with cylindrical coordinates r, θ, z , take

 $\lambda = \cos r \, dz \, + r \sin r \, d\theta \; \; .$

Note

$$d\theta = \frac{x\,dy - y\,dx}{r^2}$$

but $r \sin r = r^2$ (some smooth function) so this is indeed a well-define 1-form. Then we calculate:

$$d\lambda = -\sin r \, dr \, dz + (\sin r + r \cos r) \, dr \, d\theta$$

and

$$\lambda \wedge d\lambda = \cos r \left(\sin r + r \cos r\right) dz dr d\theta - r \sin^2 r d\theta dr dz$$
$$= \left(r + \cos r \sin r\right) dz dr d\theta$$

so this is a fine contact form.

Now the contact structure is:

$$\xi = \operatorname{Span}\left(\frac{\partial}{\partial r}, r \sin r \frac{\partial}{\partial \theta} - \cos r \frac{\partial}{\partial z}\right) \;.$$

Then this will be flat at the origin, and on the locus where z = 0 and $r = \pi$. In particular, the disk of radius π is an over-twisted disk.

Note that if we took the standard contact form instead of this weird one, we wouldn't have gotten this behaviour.

Definition 2. ξ is tight if it is not over-twisted.

Fact 1. The standard contact structure $\xi = \ker(dz - y dx)$ on \mathbb{R}^3 is tight.

This was first proved by Bennequin in the early 80s. Nowadays it follows from holomorphic curve techniques. In particular, it is a special case of the following theorem.

Definition 3. A strong symplectic filling of a compact manifold (Y^{2n-1},ξ) with a contact structure, is a compact symplectic manifold (X^{2n},ω) with boundary Y such that either

- (1) there exists a contact form λ on Y with ker $\lambda = \xi$, and $d\lambda = \omega|_Y$. Note that when we write $\partial X = Y$, this is with orientation¹,
- (2) or equivalently there exists a Liouville vector field V on X in a neighborhood of Y such that $V \pitchfork Y$, ker $\iota_V \omega|_Y = \xi$, and V points <u>out</u> of Y.

Theorem 1. If (Y^3, ξ) has a strong symplectic filling, then ξ is tight.

¹Both X and Y have orientations induced by their non-degeneracy conditions.

We will (hopefully) prove this later using holomorphic curves.

Example 2. If Y is a compact star-shaped hypersurface in \mathbb{R}^4 , then this separates \mathbb{R}^4 into two regions, and the compact region is a strong symplectic filling of Y.

Example 3. Let U be the unit cotangent bundle of a surface (Σ, g) , then a strong filling is given by cotangent vectors of length ≤ 1 .

Theorem 2 (Eliashberg). Fix a compact 3-manifold. The inclusion map from over-twisted contact structures on Y to oriented 2-plane fields on Y is a homotopy equivalence.

In particular, every orientable 3-manifold has an oriented 2-plane field.

Fact 2. There exist compact 3-manifolds with no tight contact structure.

Theorem 3 (Eliashberg). Suppose (Y^3, ξ) is tight and Y is closed. Let $\Sigma \subset Y$ be an embedded, connected, orientable surface. Then

$$\begin{cases} 2g-2 \quad \Sigma \neq S^{2} \\ 0 \qquad \Sigma = S^{2} \end{cases} = \max\left\{0, -\chi\left(\Sigma\right)\right\} \ge \left|\left<\left[\Sigma\right], e\left(\xi\right)\right>\right|$$

where $[\Sigma] \in H_2(Y)$ and $e(\xi) \in H^2(Y, \mathbb{Z})$.

One thing this gives us is a lower bound on the Thurston norm i.e. the minimum genus needed for a surface to represent the same homology class. This also gives restrictions on $e(\xi)$ for tight ξ .

2. Geodesic flow

Now we want to return to a proof that we did not do before. In particular, we will show that on T^*X , X_H for $H = |\cdot|^2/2$ yields exactly geodesic flow. This comes from the relationship between Hamiltonian mechanics and Lagrangian mechanics.

Let X be a smooth *n*-dimensional manifold, and let $L : TX \to \mathbb{R}$ be a Lagrangian² function. One version of classical mechanics is the following. A trajectory $\gamma : [a, b] \to X$ is a critical point of the "action"

$$A(\gamma) = \int_{a}^{b} L(\gamma, \dot{\gamma}) dt$$

subject to the boundary conditions

$$\gamma\left(a\right) = x_0 \qquad \qquad \gamma\left(b\right) = x_1 \; .$$

Example 4. If X has a Riemannian metric, and $L(x, \dot{x}) = \frac{1}{2} |\dot{x}|^2$, then these critical points are geodesics from x_0 to x_1 parametrized at constant speed.

Now we can work in local coordinates x_1, \dots, x_n on X and v_1, \dots, v_n on TX. We can write our path as:

$$\gamma(t) = (x_1(t), \cdots, x_n(t))$$

and then we can consider a variation

$$\eta: [a,b] \to \mathbb{R}^n$$

²This is different from a Lagrangian submanifold.

such that $\eta(a) = \eta(b) = 0$ so we don't change our boundary conditions. We can also write $\eta(t) = (\eta_1(t), \dots, \eta_n(t))$. Then γ is a critical point iff for all such η

$$\left. \frac{d}{d\epsilon} \right|_{\epsilon=0} A\left(\gamma + \epsilon \eta\right) = 0 \; .$$

Now let's see what this tells us. We can write

$$\frac{d}{d\epsilon}A\left(\gamma+\epsilon\eta\right) = \int_{a}^{b}\sum_{i=1}^{n}\left(\eta_{i}\frac{\partial L}{\partial x_{i}} + \frac{\partial\eta_{i}}{\partial t}\frac{\partial L}{\partial v_{i}}\right) dt$$
$$= \int_{a}^{b}\sum_{i=1}^{n}\eta_{i}\left(\frac{\partial L}{\partial x_{i}} - \frac{d}{dt}\frac{\partial L}{\partial v_{i}}\right)$$

where we have integrated by parts. Since this has to work for any η , γ is a critical point iff

$$\frac{\partial L}{\partial x_{i}}\left(\gamma,\dot{\gamma}\right) - \frac{d}{dt}\frac{\partial L}{\partial v_{i}}\left(\gamma,\dot{\gamma}\right) = 0$$

for all *i*. These are called the *Euler-Lagrange equations*.

So we're starting by looking for a map to the tangent bundle satisfying some equations, and we're trying to get a map to the cotangent bundle to get back to symplectic geometry. We will leave this as a cliffhanger.³ We will start talking a bit about group actions in symplectic geometry soon, and then move on to pseudo-holomorphic curves. Professor Hutchings will be gone on Tuesday March 5th.

 $^{^{3}\}mathrm{This}$ is in the beginning of McDuff-Salamon.