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1. More contact structures

Lemma 1. Let Y be a compact 2n − 1 dimensional manifold. Let {ξt}t∈[0,1] be

a smooth family of contact structures., i.e. ξt = ker (λt) where {λt} is a smooth
family of contact forms. Then there exists an isotopy {ϕt}t∈[0,1], for ϕt ∈ Diff (Y ),

ϕ0 = idR such that ϕ∗t ξt = ξ0 for each t, i.e. ϕ∗tλt = ftλt for smooth ft : Y → R≥0.

Remark 1. We cannot expect to get an isotopy ϕ∗tλt = λ0, because this would imply
that the dynamics would be the same under ϕt, but this can’t be the case. E.g.
recall that ∂E (a, b) (with the restriction of the standard form on R4) has simple
Reeb orbits of period a, b, and no others if a/b 6∈ Q. If there exists a diffeomorphism
with ϕ∗λa,b = λa′,b′ then the Reeb orbits for λa,b have the same period as the Reeb
orbits for λa′,b′ .

Proof. We want to find ϕt and ft with

ϕ∗tλt = ftλ0 .

Now take the derivative of both sides to get:

d

dt
ϕ∗tλt =

(
d

dt
ft

)
λ0

but the LHS can be written:

d

dt
ϕ∗tλt = ϕ∗t

(
dλt
dt

+ LXt
λt

)
=

(
d

dt
ft

)(
1

ft
ϕ∗tλt

)
and now we need to solve for this Xt. Rewrite this as

ϕ∗t

(
dλt
dt

+ LXtλt

)
= ϕ∗t (gtλt) where ϕ∗t gt =

1

ft

dft
dt

.

So we just need to solve:
dλt
dt

+ LXtλt = gtλt .

First we can rewrite the Lie derivative to get:

dλt
dt

+ dιXt
λt + ιXt

dλt = gtλt

Let us take Xt (p) ∈ ξt (p) for each p, so λt (Xt) = 0, so the second term is 0. Now
we can uniquely decompose

dλt
dt

= gtλt + ht
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where ht annihilates Rt, i.e. gt = dλ/dt (Rt). We need ιXt
dλt = ht. But we can

uniquely solve for Xt by non-degeneracy of dλt on ξt. Now we can solve

ϕ∗t gt =
d

dt
log (ft)

to get ft. �

1.1. Contact structures on 3-manifolds. Let ξ be a contact structure on Y 3.

Definition 1. ξ is called overtwisted if there exists an embedded disk D ⊂ Y such
that ξ|∂D = TD|∂D. Such a disk is called an overtwisted disk.

Example 1. On R3 with cylindrical coordinates r, θ, z, take

λ = cos r dz + r sin r dθ .

Note

dθ =
x dy − y dx

r2

but r sin r = r2 (some smooth function) so this is indeed a well-define 1-form. Then
we calculate:

dλ = − sin r dr dz + (sin r + r cos r) dr dθ

and

λ ∧ dλ = cos r (sin r + r cos r) dz dr dθ − r sin2 r dθ dr dz

= (r + cos r sin r) dz dr dθ

so this is a fine contact form.
Now the contact structure is:

ξ = Span

(
∂

∂r
, r sin r

∂

∂θ
− cos r

∂

∂z

)
.

Then this will be flat at the origin, and on the locus where z = 0 and r = π. In
particular, the disk of radius π is an over-twisted disk.

Note that if we took the standard contact form instead of this weird one, we
wouldn’t have gotten this behaviour.

Definition 2. ξ is tight if it is not over-twisted.

Fact 1. The standard contact structure ξ = ker ( dz − y dx ) on R3 is tight.

This was first proved by Bennequin in the early 80s. Nowadays it follows from
holomorphic curve techniques. In particular, it is a special case of the following
theorem.

Definition 3. A strong symplectic filling of a compact manifold
(
Y 2n−1, ξ

)
with

a contact structure, is a compact symplectic manifold
(
X2n, ω

)
with boundary Y

such that either

(1) there exists a contact form λ on Y with kerλ = ξ, and dλ = ω|Y . Note
that when we write ∂X = Y , this is with orientation1,

(2) or equivalently there exists a Liouville vector field V onX in a neighborhood
of Y such that V t Y , ker ιV ω|Y = ξ, and V points out of Y .

Theorem 1. If
(
Y 3, ξ

)
has a strong symplectic filling, then ξ is tight.

1Both X and Y have orientations induced by their non-degeneracy conditions.
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We will (hopefully) prove this later using holomorphic curves.

Example 2. If Y is a compact star-shaped hypersurface in R4, then this separates
R4 into two regions, and the compact region is a strong symplectic filling of Y .

Example 3. Let U be the unit cotangent bundle of a surface (Σ, g), then a strong
filling is given by cotangent vectors of length ≤ 1.

Theorem 2 (Eliashberg). Fix a compact 3-manifold. The inclusion map from
over-twisted contact structures on Y to oriented 2-plane fields on Y is a homotopy
equivalence.

In particular, every orientable 3-manifold has an oriented 2-plane field.

Fact 2. There exist compact 3-manifolds with no tight contact structure.

Theorem 3 (Eliashberg). Suppose
(
Y 3, ξ

)
is tight and Y is closed. Let Σ ⊂ Y be

an embedded, connected, orientable surface. Then{
2g − 2 Σ 6= S2

0 Σ = S2
= max {0,−χ (Σ)} ≥ |〈[Σ] , e (ξ)〉|

where [Σ] ∈ H2 (Y ) and e (ξ) ∈ H2 (Y,Z).

One thing this gives us is a lower bound on the Thurston norm i.e. the minimum
genus needed for a surface to represent the same homology class. This also gives
restrictions on e (ξ) for tight ξ.

2. Geodesic flow

Now we want to return to a proof that we did not do before. In particular, we
will show that on T ∗X, XH for H = |·|2 /2 yields exactly geodesic flow. This comes
from the relationship between Hamiltonian mechanics and Lagrangian mechanics.

Let X be a smooth n-dimensional manifold, and let L : TX → R be a La-
grangian2 function. One version of classical mechanics is the following. A trajectory
γ : [a, b]→ X is a critical point of the “action”

A (γ) =

∫ b

a

L (γ, γ̇) dt

subject to the boundary conditions

γ (a) = x0 γ (b) = x1 .

Example 4. If X has a Riemannian metric, and L (x, ẋ) = 1
2 |ẋ|

2
, then these

critical points are geodesics from x0 to x1 parametrized at constant speed.

Now we can work in local coordinates x1, · · · , xn on X and v1, · · · , vn on TX.
We can write our path as:

γ (t) = (x1 (t) , · · · , xn (t))

and then we can consider a variation

η : [a, b]→ Rn

2This is different from a Lagrangian submanifold.
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such that η (a) = η (b) = 0 so we don’t change our boundary conditions. We can
also write η (t) = (η1 (t) , · · · , ηn (t)). Then γ is a critical point iff for all such η

d

dε

∣∣∣∣
ε=0

A (γ + εη) = 0 .

Now let’s see what this tells us. We can write

d

dε
A (γ + εη) =

∫ b

a

n∑
i=1

(
ηi
∂L

∂xi
+
∂ηi
∂t

∂L

∂vi

)
dt

=

∫ b

a

n∑
i=1

ηi

(
∂L

∂xi
− d

dt

∂L

∂vi

)
where we have integrated by parts. Since this has to work for any η, γ is a critical
point iff

∂L

∂xi
(γ, γ̇)− d

dt

∂L

∂vi
(γ, γ̇) = 0

for all i. These are called the Euler-Lagrange equations.
So we’re starting by looking for a map to the tangent bundle satisfying some

equations, and we’re trying to get a map to the cotangent bundle to get back to
symplectic geometry. We will leave this as a cliffhanger.3 We will start talking a
bit about group actions in symplectic geometry soon, and then move on to pseudo-
holomorphic curves. Professor Hutchings will be gone on Tuesday March 5th.

3This is in the beginning of McDuff-Salamon.
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