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1. MORE CONTACT STRUCTURES

Lemma 1. Let Y be a compact 2n — 1 dimensional manifold. Let {ft}te[m] be
a smooth family of contact structures., i.e. & = ker (\;) where {\:} is a smooth
family of contact forms. Then there exists an isotopy {gat}te[[)ﬂ, for ¢ € Diff (Y),
o = idg such that ;& = & for each t, i.e. ©i\y = fi)\¢ for smooth f; : Y — R20.

Remark 1. We cannot expect to get an isotopy ¢; A\ = Ao, because this would imply
that the dynamics would be the same under ¢;, but this can’t be the case. E.g.
recall that OF (a,b) (with the restriction of the standard form on R*) has simple
Reeb orbits of period a, b, and no others if a/b & Q. If there exists a diffeomorphism
with ©*Aq s = Mg then the Reeb orbits for A, ; have the same period as the Reeb
orbits for )\a’,b’-

Proof. We want to find ¢; and f; with

VA= fi)o -
Now take the derivative of both sides to get:
d

. d
%@t)\t = (dtft> Ao
but the LHS can be written:

prid At = ¢y (dtt +£Xt>\t> = (dtft> <ﬁ¢t>\t>

and now we need to solve for this X;. Rewrite this as

d\ 1d
(TN (t + ﬁxt)\t> =y (9:)e) where i gt = L

dt fodt -

So we just need to solve:
— +Lx, At = giAe -

First we can rewrite the Lie derivative to get:

dA
T dex, A+ o, A = gk
Let us take X; (p) € & (p) for each p, so A¢ (X¢) = 0, so the second term is 0. Now

we can uniquely decompose

d\;
— =gM+h
dt gt t
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where h; annihilates Ry, i.e. g = d\/dt (R:). We need tx, d\¢ = hy. But we can
uniquely solve for X; by non-degeneracy of d\; on &. Now we can solve

. d
¢rge = log (fr)
to get fi. O
1.1. Contact structures on 3-manifolds. Let £ be a contact structure on Y3.

Definition 1. £ is called overtwisted if there exists an embedded disk D C Y such
that £|,, = T'D|,p. Such a disk is called an overtwisted disk.

Example 1. On R? with cylindrical coordinates r, 6, z, take
A=cosrdz +rsinrdf .

Note p d
do = M
r
but 7 sinr = 72 (some smooth function) so this is indeed a well-define 1-form. Then
we calculate:
d\ = —sinrdr dz + (sinr 4+ rcosr) dr df

and
AA d\ = cosr (sinr +rcosr) dz dr df — rsin®rdf dr dz
= (r+cosrsinr) dz dr df

so this is a fine contact form.
Now the contact structure is:

& = Span 3 rsim“g—cosr2
R T/ 0z)

Then this will be flat at the origin, and on the locus where z = 0 and r = 7. In
particular, the disk of radius 7 is an over-twisted disk.

Note that if we took the standard contact form instead of this weird one, we
wouldn’t have gotten this behaviour.

Definition 2. ¢ is tight if it is not over-twisted.
Fact 1. The standard contact structure & = ker (dz —ydx) on R? is tight.

This was first proved by Bennequin in the early 80s. Nowadays it follows from
holomorphic curve techniques. In particular, it is a special case of the following
theorem.

Definition 3. A strong symplectic filling of a compact manifold (Y2"_17§) with
a contact structure, is a compact symplectic manifold (X 2",w) with boundary Y
such that either
(1) there exists a contact form A on Y with ker A = ¢, and d\ = w|,.. Note
that when we write 9X =Y, this is with orientation®,
(2) or equivalently there exists a Liouville vector field V on X in a neighborhood
of Y such that V MY, kerty w|y, =&, and V' points out of Y.

Theorem 1. If (Y3,f) has a strong symplectic filling, then £ is tight.

IBoth X and Y have orientations induced by their non-degeneracy conditions.
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We will (hopefully) prove this later using holomorphic curves.

Example 2. If Y is a compact star-shaped hypersurface in R*, then this separates
R* into two regions, and the compact region is a strong symplectic filling of Y.

Example 3. Let U be the unit cotangent bundle of a surface (3, g), then a strong
filling is given by cotangent vectors of length < 1.

Theorem 2 (Eliashberg). Fiz a compact 3-manifold. The inclusion map from
over-twisted contact structures on'Y to oriented 2-plane fields on'Y is a homotopy
equivalence.

In particular, every orientable 3-manifold has an oriented 2-plane field.
Fact 2. There exist compact 3-manifolds with no tight contact structure.

Theorem 3 (Eliashberg). Suppose (Y?’,{) is tight and Y is closed. Let ¥ C'Y be
an embedded, connected, orientable surface. Then

ﬁg? ;i;:mwmrx@nzMwaﬂ

where [¥] € Hy (Y) and e (§) € H? (Y, Z).

One thing this gives us is a lower bound on the Thurston norm i.e. the minimum
genus needed for a surface to represent the same homology class. This also gives
restrictions on e (§) for tight &.

2. GEODESIC FLOW

Now we want to return to a proof that we did not do before. In particular, we
will show that on T* X, Xg for H = ||2 /2 yields exactly geodesic flow. This comes
from the relationship between Hamiltonian mechanics and Lagrangian mechanics.

Let X be a smooth n-dimensional manifold, and let L : TX — R be a La-
grangian? function. One version of classical mechanics is the following. A trajectory
v : [a,b] = X is a critical point of the “action”

b
Ae) = [ Loni) di
subject to the boundary conditions
7 (a) = o v(b) =1 .

Example 4. If X has a Riemannian metric, and L (x,2) = %|a’s|2, then these
critical points are geodesics from xy to x; parametrized at constant speed.

Now we can work in local coordinates x1,--- ,x, on X and vy, -- ,v, on TX.
We can write our path as:

Y(t) = (1), 20 (t))
and then we can consider a variation

7 : [a,b] = R"

2This is different from a Lagrangian submanifold.
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such that 7 (a) = 1 (b) = 0 so we don’t change our boundary conditions. We can
also write 1 (t) = (n1 (¢),- -+ ,nn (t)). Then  is a critical point iff for all such »

—| A(y+en)=0.

de|._,

Now let’s see what this tells us. We can write
d b oL  n; OL
24 — oL 9
) /a 2 (”Z oz ot avi> dt

i=1
B /bz”: (0L d oL
o i " ai]']z dtavl

where we have integrated by parts. Since this has to work for any 7, v is a critical
point iff

L d OL
for all . These are called the Fuler-Lagrange equations.

So we're starting by looking for a map to the tangent bundle satisfying some
equations, and we're trying to get a map to the cotangent bundle to get back to
symplectic geometry. We will leave this as a cliffhanger.®> We will start talking a
bit about group actions in symplectic geometry soon, and then move on to pseudo-
holomorphic curves. Professor Hutchings will be gone on Tuesday March 5th.

3This is in the beginning of McDuff-Salamon.
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