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The website will eventually be updated with exercises and reading etc.

1. Hypersurfaces

Hypersurfaces are defined by a single homogeneous polynomial. Note that we
need it to be of degree two for it to even be interesting, so let f (x0, · · · , xn) be of
degree 2, then H = V (f) ⊂ Pn is what is called a quadric.

Recall we can always write a homogeneous quadratic form f (x0, · · · , xn) = xTAx
where A is some symmetric matrix. In particular, up to a linear change of variables,
this A is unique i.e. it is only determined up to changes of the following form:
STAS. Then it is a basic result of linear algebra that over an algebraically closed
field, we can always get A to be a diagonal matrix with r 1s and potentially some
0s, so we can assume that f is just x20 + · · ·+ x2r up to isomorphism.

Now for any element of our projective space (x0 : · · · : xr : xr+1 : · · · : xn) if we
insist that x20 + · · · + x2r = 0, this doesn’t affect the rest of the coordinates. The
picture is as in fig. 1 where

Y = V (xr+1, · · · , xn) ∼= Pr Z = V (x0, · · · , xr) ∼= Pn−r−1

Every point in the projective space lies on one of the projective lines connecting Z
to Y .

Now we impose an equation inside Y which gives us some nondegenerate hyper-
surface Hr within Y . Then we can cone this to a point in Z or a collect of points
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Pn

Z ∼= Pn−r−1Y ∼= Pr

Figure 1. Two hypersurfaces Y and Z of Pn. Then we take a
hypersurface of Y and cone it with a point of Z.
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in Z. When r = n, this is the nondegenerate case, and when r < n this will be a
cone over a nondegenerate quadric.

Example 1. Consider r = n = 0, then we just get the empty set.

Example 2. Consider n > r = 0. Clearly Y is empty, so if we cone over this, we
don’t get any lines, but we do get the points we are coning over. This means we
get the cone over ∅ which is Pn−1, or written as a hypersurface H = V

(
x20
)
.

Example 3. If r = n = 1, so we’re in P1, then we are putting the equation x20 +x21,
or H = (x0x1) by changing coordinates, so H = {0,∞}.

If n > r = 1, then H = two Pn−1s and f factors as f = g1g2.

Example 4. If r = n = 2 we get a conic. Note that a conic in P2 always turns out
to be isomorphic to P1.

Example 5. Consider H ⊂ Pn where

H = V
(
x0x1 + x22 + · · ·+ x2n

)
Now intersect H with U0 by setting x0 = 1, so we get the equation in affine
coordinates V

(
x1 + x22 + · · ·+ x2n

)
. So x1 = −x22 − · · · − x2n, so this is the map

kn−1 → k which sends

(x2, · · · , xn) 7→ −
(
x22 + · · ·+ x2n

)
which is of course isomorphic to kn−1 by the projection.

2. Maps between classical varieties

First we have to talk a bit more about sheaves. Suppose we have a continuous
map of topological space ϕ : X → Y and some presheaf A on X. Then we want
to construct a presheaf on Y called the direct image (or push forward) ϕ∗A. We
won’t go into the details of it, but this construction will be functorial. Define:

(ϕ∗A) (U) := A
(
ϕ−1 (U)

)
with the obvious maps ρUV . If A is a sheaf, it follows that ϕ∗A is a sheaf, since
preimages preserves the condition we put on a sheaf.

Now a morphism of varieties ϕ : (X,OX) → (Y,OY ) is a continuous function
ϕ : X → Y such that ϕ preserves regular functions in the following sense. For
ϕ : X → Y , there is a canonical map

ϕ[ : Fun (Y, k)→ ϕ∗ Fun (X, k)

We want to send some f ∈ Fun (Y, k) (U), i.e. a map f : U → k to something in
(ϕ∗ Fun (X, k)) (U) = Fun (X, k)

(
ϕ−1 (U)

)
, in particular

f 7→ f ◦
(
ϕ|ϕ−1(U)

)
So now the sense in which ϕ preserves these functions is that:

ϕ[OY ⊆ ϕ∗OX

Example 6. Let X = kn+1 \ {0}. Then X =
⋃

iWi where Wi = Xxi . There
is a map X → Pn which sends (x0, · · · , xn) 7→ (x0 : · · · : xn). This is certainly a
map of sets, so we just need to check that this is a map of varieties. This map
certainly maps each Wi → Ui

∼= kn, so Wi is kn+1 minus a hyperplane. The
coordinate ring on kn is just k [x1, · · · , xn], and the coordinate ring on W0 is just
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k
[
x±1
0 , x1, · · · , xn

]
, and then the map on functions is just the obvious inclusions.

This means this is a map of affine varieties, which is continuous. But this extends
to the whole space, so this is indeed a continuous map, and a morphism. Because
on an affine variety the global sections of the sheaf of functions is the same as
the coordinate ring, it’s fine to just check the maps from affine varieties to affine
varieties to check that the morphism on the whole variety is a morphism. This also
shows us Pn as the quotient of X by scalar multiplication.


	1. Hypersurfaces
	2. Maps between classical varieties

