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1. More on localization

1.1. Exactness. Fix a ring R and a multiplicative subset S . Recall that we
can invert S to get S−1R, and similarly for a module M we can form S−1M =
S−1R⊗RM , which has all of the universal properties we could want. But then it’s
difficult to describe, however we saw that

S−1M =
{a
s
| a ∈M, s ∈ S

}
and a/s = 0 iff ∃v ∈ s such that va = 0 ∈M . One thing we get immediately from
this is that localization on modules is an exact functor. If tensoring with a module
is exact, we say this module is flat.

First of all, if we have a homomorphism ϕ : M → N , we get a homomorphism
S−1M → S−1N where a/s 7→ ϕ (a) /s. Going from M ; S−1M is the functor
S−1R⊗−. It is a general fact that the tensor product is always right exact, i.e. we
have

0→ K →M → Q→ 0

A⊗K → A⊗M → A⊗Q→ 0

A⊗−

Recall that if a functor preserves short-exact sequences it also preserves all exact
sequences, so we just have to check what this functor does to injective maps. For
N ↪→ M we get S−1N → S−1M . But the image of something a/s ∈ S−1N maps
to 0 ∈ S−1M iff va = 0 ∈ M for some v ∈ S, but this means that va = 0 ∈ N as
well since a ∈ N , so this does indeed preserve injective maps. Therefore S−1R is a
flat R-module.

1.2. Ideals. Let I ⊆ R be an ideal. We want to understand how this is related to
S−1I ⊆ S−1R. This is the image of this under this exact functor described above.
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But we can also bring ideals in the other direction:

R S−1R

a a/1

I S−1I

j−1 (Q) Q

j

Definition 1. An ideal I is S-saturated if sa ∈ I for s ∈ S implies a ∈ I.

Proposition 1. There is a bijection between ideals of S−1M and S-saturated ideals
of M .

Proof. We need to check that the preimage of Q (i.e. a such that a/1 ∈ Q) is
S-saturated. If we take something in the preimage of Q, and act j on it, and then
generate an ideal in S−1R, certainly Q is contained in this ideal, but to see this is
Q, we notice that anything in Q can be written a/s ∈ Q, so there is nothing extra
added.

The other direction is basically the same story. Start with an ideal, see what
its image under j generated, then the inverse image of this back in R will contain
what you started with, but it might be larger. To see it is in fact equal, we notice
that any j (a) ∈ S−1I can be written as a/1 = b/s for some s ∈ S, which means
there is some v ∈ S such that vsa = vb, so vsa ∈ I, so a ∈ I. �

Any time we have a ring homomorphism α : R → T , if we have a prime ideal
Q ⊆ T , then P = α−1 (Q) is prime since R→ T → T/Q is exact, so R/P ↪→ T/Q.
In this situation we have a map SpecT → SpecR which maps Q 7→ j−1Q. And if
we think about the topology on these spaces, this is in fact a continuous map. In
the classical case, if we look a point of SpecT , this corresponds to a maximal ideal,
and then the preimage is maximal as well, so this corresponds to the preimage of
the initial point.

So we have seen that prime ideals in S−1R map to prime ideals of R, but it
also works the other way around. For P ⊆ R prime, if P ∩ S is empty, then P
is S-saturated since sx ∈ P implies s or x is in P , but the intersection with S is
empty, so x ∈ P . Then we claim that this correspondence gives us a prime ideal
S−1P ⊆ S−1R. We know j induces a homomorphism R/P → S−1R/S−1P , but
this is really just S−1R/S−1P = S−1 (R/P ). Since P is prime this is an integral
domain, so inverting everything gives us the field of fractions, but if we invert a
subset, such as S−1 (R/P ), then we get some subring of the field of fractions.

In conclusion we have the following canonical bijection:

SpecS−1R ∼= {P ∈ SpecR |P ∩ S = ∅}

But there is a special case: for some f ∈ R, R
[
f−1

]
= S−1R where S =

{
1, f, f2, · · ·

}
.

In this case,

SpecR
[
f−1

] ∼= {P ∈ SpecR | f 6∈ P}

So for X = SpecR, X \ V (f) = Xf . In addition, this correspondence turns out to
yield a homomorphism SpecR

[
f−1

]
→ X.
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Now we want to turn these topological spaces into spaces equipped with a sheaf
of rings. In general, we even want to give it a sheaf of modules for that sheaf of
rings on SpecR. Even when M = R, the sheaf of rings is no longer a sheaf of
functions. For sheaves of modules, even in the classic case we wouldn’t expect this.

We have one example of a sheaf which is not a sheaf of functions, which is the
direct image of a sheaf under a continuous map, but we will do something more
general. It works for any sheaf. We can always think of it as a sub-sheaf of a sheaf
of functions.

2. Stalks

For the moment this is just about sheaves on topological spaces. Let X be a
topological space, and let A be a sheaf on X.1

Definition 2. For any P ∈ X, the stalk of A at P is the direct limit:

AP = lim−→
U3P
A (U)

Recall in a direct limit two things are equal if they map to the same things
“later” in the direct limit. So two things represent the same element of this thing if
they somehow agree eventually as open sets get smaller. For p ∈ U , and a ∈ A (U),
a 7→ [a] ∈ AP is called the germ of a. Then [a] = [b] for a ∈ A (U) and b ∈ A (V )
iff there is some P ⊆W ⊆ U, V such that a|W = b|W .

For any sheaf, roughly speaking, we can map

A →
∏
p

(ip)∗AP

where ip : {p} → X is just inclusion, and

Ap (U) =

{
{p} U = {p}
∗ otherwise

where ∗ is the terminal object of the category which A takes values in. So a sheaf
is always a subsheaf of this direct product of the so-called skyscraper sheaves. This
is the sense in which any sheaf can be viewed as sort of being inside a larger sheaf
of “functions.”

1 With values in any category with direct limits.
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