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1. Preliminary results regarding localization of modules

Let X = SpecR and M be an R-module. Recall the construction M̃ . We want
to show that the map M → M̃ (X) is an isomorphism. First we have a lemma that
effectively says this is injective:

Lemma 1. If x ∈ M has 0 = xp ∈ Mp, where xp = x/1 is the image of x in Mp,
then x = 0 in M .

Proof. Let

I = Ann (x) := {f ∈ R | fx = 0}

For x 6= 0, I 6= (1), so it is contained in some maximal ideal P ⊇ I, which is of
course prime. Now consider xP = 0 ∈MP . Since in XP we have inverted S = R\P ,
we have that for all s ∈ S, sx 6= 0, so in fact xP 6= 0. �

Corollary 1. If xP = 0 for all P ∈ (SpecR)cl, then x = 0.

2. Support

For X any space and M a sheaf of abelian groups, we define the support of a
section x ∈M (U) to be

Supp (x) = {P ∈ U |xP 6= 0}

But in the situation above, xP = 0 just means there is some neighborhood V 3 P
such that x|V = 0. Therefore the support of x is always closed in U .

We can also talk about the support of a sheaf itself:

SuppM = {P |MP 6= 0}

This is not closed in general.

Example 1. Let M be M̃ on SpecR where M = R {x1, · · · , xk} is finitely gener-
ated. The support of any section x is just V (Ann (x)). Similarly, the support of
M is

Supp
(
M̃
)

=
⋃
i

Supp (xi) =
⋃
i

V (Ann (xi)) = V (Ann (M))

so it is in fact closed.
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3. Quasi-compactness

Usually compactness is reserved for Hausdorff spaces, so we will define a space
Y to be quasi-compact iff every open cover has a finite subcover. In particular, if
Y is also Hausdorff, then it is compact.

Fact 1. X = SpecR is quasi-compact.

Proof. Consider an open cover. Since any element of this cover can be covered by
elements of the base of the Zariski topology, WLOG we can just consider the cover
as:

X =
⋃
α

Xfα

which means

∅ =
⋂
α

Xfα = V ((fa))

But from the trivial nullstellensatz, this happens iff (fα, · · · ) = (1). But this means

1 = g1fα1
+ · · ·+ gnfαn

but then this finite collection {fαi}
n
i=1 generates (1), so the sets V (fαi) for i = 1

to n cover X. �

4. Noetherian spaces

We will call a space Noetherian if there is no infinite strictly decreasing chain of
closed subsets. This is the sort of contravariant version of a ring being Noetherian.
In particular:

Proposition 1. If R is a Noetherian ring, SpecR is a Noetherian space.

The converse is false since SpecR doesn’t know about all of the ideals of R, it
only knows the radical ideals, so we could have an infinitely increasing chain of
ideals which all have the same radical.

Lemma 2. Y is a Noetherian space iff there are no strictly increasing chains of
open subsets iff every open subset is quasi-compact.

This lemmas gives us a reason to not consider only Noetherian rings. The point
is, SpecR is always quasi-compact, but every open subset doesn’t have to be unless
R is Noetherian in the first place. This tells us to look at non-Noetherian rings for
examples of this:

Example 2. Consider a non-Noetherian ring such as:

R = k [x1, x2, · · · ]
Then X = SpecR can be thought of as infinite dimensional affine space. Now V (x1)
is like a hyperplane, and then we can keep insisting on additional coordinates being
zero, so we found a strictly decreasing infinite chain of closed subsets:

X ⊃ V (x1) ⊃ V (x1, x2) ⊃ · · ·
Then the intersection of them all is V (x1, · · · ) = Spec k = {0}. So the complement
of these things is a strictly increasing chain of open subsets, and the union of these
consists of everything except the origin. But X \ {0} can be covered by this sort
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of infinite cover, which has no finite subcover. So we found a non-quasi-compact
open set.

We can define an infinite dimensional projective space:

P∞ = (A∞ \ 0) /k×

which is perfectly good as a projective space, but is not quasi-compact.

5. Main theorem

Theorem 1. The map M → M̃ (X) is an isomorphism.

Proof. Lemma 1 tells us this is injective, so we effectively just have to show sur-
jectivity. Given α ∈ M̃ (X), (recall this means αP ∈ MP ) there is some covering,
(which we can take to be finite by quasi-compactness):

X =
⋃
i

Xfi

such that α = ai/fi. This should really be a power of fi on the bottom, but
Xfmi

= Xfi so WLOG we can just write this as a single power. Writing α = ai/fi
is somewhat subtle, and a priori might not be true for all i, but lemma 1 tells us
it’s fine. Now we have:

(a1/f1, · · · , an/fn) ∈
⊕
i

Mfi

which is in the kernel of the map:⊕
i

Mfi →
⊕
i<j

Mfifj

where we take the difference of elements of Mfi and elements of Mfj to get an ele-
ments of Mfifj . So saying something is 0 is saying the difference in the components
is 0. In fact, everything in the kernel represents a section of M . But of course we
are trying to show that any given section comes from an element of M .

But there is another map:

M →
⊕
i

Mfi →
⊕
i<j

Mfifj

so it is enough to show that this sequence is exact at the middle term. As it turns
out, the first map turns out to be injective from lemma 1, and in fact this sequence
continues to give what is called the Čech complex, which we claim is exact.

Claim 1. The following complex is exact:

M →
⊕
i

Mfi →
⊕
i<j

Mfifj →
⊕
i<j<k

Mfifjfk → · · · →
⊕

Mf1...fn → 0

We won’t give the details of the additional maps, since there are some fiddly
details regarding signs. The point is, for example, that three things of the form
Mfifj map to the same Mfifjfk , and you take their sum, only you need to choose
signs.

To see this sequence is exact, it is enough to show it after localizing each of the
objects at prime P . This is because lemma 1 tells us that localization is exact.
Therefore we will consider the homology groups of the resulting localized complex,
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and these will be the localizations of the homology of the original complex, so it is
enough to just check that the homology of the localized sequence is 0.

But now this is easy to see, because it’s made of little exact sequences. In
particular, every time we add an f1 to the index set, the corresponding map is an
isomorphism, which is just an exact sequence with two adjacent nonzero objects as
in the following diagram:

Mf1 Mf1f2

M Mf2 Mf2f3 Mf1f2f3

Mf3 Mf1f3

∼ ∼

∼

∼

Since direct sums of exact complexes are still exact, even if you tweak the maps,
the desired complex is exact. �

Remark 1. In the proof of the preceding theorem we only needed to see exactness
at the first object. However as we will see later when we study sheaf cohomology,
the exactness means something at each of the objects in the complex.

Next time we will see that M̃ (Xf ) = Mf as a corollary of this theorem.
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