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1. Affine schemes

So at this point, we have an effectively complete definition of SpecR. This is a
topological space with a sheaf of rings Ox = R̃, and if we have an R-module M , we
have a sheaf of M̃ modules over OX . We have a pretty good handle on this, since
by definition we have the stalks M̃P = MP . That is, if we look at things locally,
i.e. in Xf ⊇ U 3 P , they should be of the form a/f for a ∈ M and f ∈ R. Last

time we saw that M̃ (X) = M , and as a corollary M̃ (Xf ) = Mf .
When is Xg ⊆ Xf? This is just saying V (f) ⊆ V (g). We already saw on SpecR,

one closed subset will be contained in another iff the radicals of the corresponding
ideals are contained in one another. So this is the same as g ∈

√
(f), i.e. for some

m and some a ∈ R, gm = af . So if g has an inverse, so does gm, which means af
does, which means f does.

So what is the restriction map: M̃ (Xf ) → M̃ (Xg)? This is just a map Mf →
Mg. We know we have a localization map M → Mg, but the universal property
of Mf is that if we have a map from M to any Rf module, it will factor through.
But f is invertible from the above discussion, so Mg is such an Rf module, and
therefore we have the following diagram:

Mf

M Mg

This is what we will call an affine scheme. A classical affine variety is an affine
scheme, as long as we take R to be our ring of functions.

2. Local rings

A commutative ring with unit A will be a local ring iff it has a unique maximal
ideal.

Example 1. The zero ring is not local, since a maximal ideal must be proper.

Example 2. Fields are local rings since the zero ideal is the unique maximal ideal.

Lemma 1. A ring is local iff every a ∈ A \m has an inverse.

Proof. Let A be a local ring. Then take an element a outside of the maximal ideal
m. This means any ideal containing a must be the unit ideal, which means a is
invertible. Conversely, assume every non-unit of A is contained in a maximal ideal.

Date: October 1, 2018.

1



2 LECTURE BY: PROFESSOR MARK HAIMAN NOTES BY: JACKSON VAN DYKE

Then this ideal must be maximal, since adding any additional element to this ideal
makes it into the unit ideal since any additional element is invertible. �

Example 3. For P ⊆ R a prime ideal, RP is a local ideal. The unique maximal
ideal is PRP . Indeed anything not in this was inverted by inverting S := R \ P .
The residue field is the field of fractions of R/P , which is just RP / (PRP ).

3. Ringed spaces

3.1. Definitions and examples. A space (X,OX) is called a ringed space iff OX

is a sheaf of rings. It is a locally ringed space iff the stalks Ox,P are local rings for
all P ∈ X.

Then an affine scheme is a ringed space which is isomorphic as a ring space to
SpecR.

Now define an arbitrary scheme to be a ringed space which can be covered by
open sets which are affine scheme.1 Similarly observe that all schemes are locally
ringed spaces.

To get anywhere we will have to talk about morphisms of ringed spaces, but we
will introduce some simple examples first.

Example 4. An affine scheme is an example of a ringed space since every stalk of
an affine scheme is a ring localized at a prime, and therefore a local ring.

Example 5. Any open subset U ⊆ X of a scheme is a scheme. To see this, notice
that since affine schemes comprise a basis for X, any open subset of X can be
covered by affine schemes.

Example 6. Classical varieties Y over k = k are schemes. We still have to prove
some things to see this, but it is true. Y will be the set of closed points Xa for a
scheme naturally related to it, and when you do this, there are a few things to notice.
First, Y is basically the same as X since the inclusion of the set of closed points into
X is a quasi-homeomorphism. That is, the topology hasn’t fundamentally changed.

In fact the category of classical varieties over k is the same as the category of
reduced2 schemes locally of finite type over Spec k.

Example 7. Classical affine space was just kn, but we can think of this as Spec
of the polynomial ring k [x1, · · · , xn]. Of course we can do this over any ring R,
which will come with a free map SpecR [x1, · · · , xn]→ SpecR which is just given by
inclusion. This is called affine n-space over R, written An (R) = SpecR [x1, · · · , xn].
We can then form the following fiber product:

kn An (R)

Spec k SpecR

Similarly, we can define projective space Pn (R) over R. This will have the same
property, where the geometric fibers over the map Pn (R) → SpecR will look like
the usual n-dimensional projective space over k.

1 This definition is analogous to our definitions of affine varieties and generic varieties.
2This means there are no nonzero nilpotent elements in the structure sheaf.
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We will eventually see that it’s somehow true that the only case we will need is
R = Z. Z universally maps to any ring, which means every scheme X is somehow
canonically living over SpecZ: X → SpecZ.

3.2. Morphisms of ringed spaces. It is easy to define morphisms of ringed spaces
if the sheaf of rings is a sheaf of functions, but we have to work harder to define
this for generic ringed spaces. To do this, we need some more sheaf theory.

Consider a continuous map f : X → Y between topological spaces, and a sheaf
S on X. Then we know we can define f∗S by taking

f∗S (U) = S
(
f−1 (U)

)
This actually makes sense for presheaves.

Remark 1. There are two basic types of operations on (pre)sheaves. The first type
is somehow defined in terms of sections, is left exact, and makes sense for presheaves
as well. The second type is somehow defined in terms of stalks, is right exact, and
doesn’t make sense for presheaves. The above is an example of the first type, and
the next operation is an example of the second type.

Now we want to take a sheaf A on Y , and define a sheaf f−1A on X. Let P ∈ X
be a point of X and define (

f−1A
)
P

:= Af(P )

The sections of f−1A on U will be contained in∏
P∈U

(
f−1A

)
P

They will satisfy the following property. Let V ⊃ f (P ) be an open set, then
U = f−1 (V ) is an open set containing P . Now pick a section s ∈ A (V ). Then we
will insist that the sections of f−1A (U) are locally of the form f−1s on W ⊆ U .
Now this gives us a sheaf since these are local conditions, which are also clearly
compatible with restrictions.

Example 8. If f : X → X is the identity and A is any presheaf on X, f−1A is a
sheaf on X. This is then called the sheafification.

As it turns out,

f∗ : Sh (X)→ Sh (Y ) f−1 : Sh (Y )→ Sh (X)

are adjoint functors. The direct image functor is right adjoint to the inverse image
functor. This means that for a continuous map f : X → Y and for sheaves S on X
and A on Y ,

HomSh(X)

(
f−1A,S

)
= HomSh(Y ) (A, f∗S)
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