LECTURE 18
 MATH 256A

LECTURES BY: PROFESSOR MARK HAIMAN
NOTES BY: JACKSON VAN DYKE

1. Adjunction

Consider a continuous map $f: X \rightarrow Y$ and let \mathcal{A} be a sheaf on X, and \mathcal{B} be a sheaf on Y. Now we can form a sheaf $f_{*} \mathcal{A}$ on Y, which is defined to have sections:

$$
f_{*} \mathcal{A}(V)=\mathcal{A}\left(f^{-1}(V)\right)
$$

and similarly we can form $f^{-1} \mathcal{B}$ on X, which is defined to have the following stalks:

$$
\left(f^{-1} \mathcal{B}\right)_{p}=\mathcal{B}_{f(p)}
$$

But this doesn't tell us anything about the sections. So we say that the sections are locally of the form $f^{-1}(s)$ where s is the section of some open set of Y, and explicitly if we have $s \in \mathcal{B}(V)$, then

$$
f^{-1} s \in\left(f^{-1} \mathcal{B}\right)\left(f^{-1}(V)\right) \subseteq \prod_{p \in f^{-1}(V)} \mathcal{B}_{f(p)}
$$

and in particular

$$
f^{-1} s=p \mapsto s_{f(p)}
$$

The moral is that the direct image functor preserves sections and the inverse image functor preserves stalks.

Remark 1. We can do either construction for a presheaf, and the direct image will still be a presheaf, but the inverse image gives you an actual sheaf.

Theorem 1. f^{-1} is left adjoint to f_{*}. Equivalently, f_{*} is right adjoint to f^{-1}.
Proof. This just means if we have a map

$$
\varphi: \mathcal{B} \rightarrow f_{*} \mathcal{A}
$$

which is an arrow in $\mathbf{S h}(Y)$, then we have a functorial bijection between such maps and maps

$$
\psi: f^{-1} \mathcal{B} \rightarrow \mathcal{A}
$$

which is of course an arrow in $\mathbf{S h}(X)$.
First suppose we are given φ. Let $p \in X$ map to $f(p)=q \in Y$. Let $q \in V \subseteq Y$ be an open neighborhood of q, so $U=f^{-1} V$ is an open neighborhood of p. Then for any section $s \in \mathcal{B}(V)$, we can map this to $\varphi(s)$, which is of course in $\left(f_{*} \mathcal{A}\right)(V)$. But by definition, this is just $\mathcal{A}(U)$, so we can map this to $\varphi(s)_{p} \in \mathcal{A}_{p}$. Alternatively, starting with our original section $s \in \mathcal{A}(V)$ we can map this to $s_{q} \in \mathcal{B}_{q}=\left(f^{-1} \mathcal{B}\right)_{p}$.

[^0]Then we can map this to $\varphi(s)_{q} \in\left(f_{*} A\right)_{q}$. But now there is a unique map from this to $\varphi(s)_{p}$. I.e. the following diagram commutes:

Now if we are given $\psi: f^{-1} \mathcal{B} \rightarrow \mathcal{A}$, then for $s \in \mathcal{B}(V)$,

$$
\begin{gathered}
f^{-1} s \in\left(f^{-1} \mathcal{B}\right)(U) \\
\downarrow \psi \\
\psi\left(f^{-1} s\right) \in \mathcal{A}(U)=\left(f_{*} A\right)(V)
\end{gathered}
$$

Now note that we effectively get the functoriality for free here since $f^{-1} f_{*} \mathcal{A} \rightarrow$ \mathcal{A}, which is a morphism in $\operatorname{Sh}(X)$ corresponds to the identity id : $f_{*} \mathcal{A} \rightarrow f_{*} \mathcal{A}$. The $\operatorname{map} p_{\mathcal{A}}: f^{-1} f_{*} \mathcal{A} \rightarrow \mathcal{A}$ is the counit of the adjunction. Similarly the map $p_{\mathcal{B}}: \mathcal{B} \rightarrow f_{*} f^{-1} \mathcal{B}$ is the counit of id : $f^{-1} \mathcal{A} \rightarrow f^{-1} \mathcal{B}$ then for $\varphi: B \rightarrow f_{*} A$

$$
f^{-1} B \xrightarrow{f^{-1} \varphi} f^{-1} f_{*} A \xrightarrow{p_{A}} A
$$

2. MORPHISMS OF RINGED SPACES

Recall a ringed space is just a space with a sheaf of rings. Then a morphism of ringed spaces

$$
\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)
$$

is a triple $\left(f, f^{b}, f^{\#}\right)$ where

$$
f: X \rightarrow Y \quad \quad f^{b}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X} \quad f^{\#}: f^{-1} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}
$$

Note that f^{b} determines $f^{\#}$ and vice versa, so we don't actually need to specify them separately.

Example 1. Suppose $\mathcal{O}_{X} \subseteq \operatorname{Fun}(X, k)$ and $\mathcal{O}_{Y} \subseteq \operatorname{Fun}(Y, k)$ are sheaves of functions. For a continuous map $f: X \rightarrow Y$, for any open set $V \subseteq Y,\left(U=f^{-1} V\right)$ then for any function $a \in \operatorname{Fun}(Y, k)(V)$,

$$
a \circ f \in \operatorname{Fun}(X, k)(U)=f_{*} \operatorname{Fun}(X, k)(V)
$$

so this is a map

$$
f^{b}: \operatorname{Fun}(Y, k) \rightarrow f_{*} \operatorname{Fun}(X, k)
$$

In particular, if $f^{b}\left(\mathcal{O}_{Y}\right) \subseteq f_{*} \mathcal{O}_{X}$, then we get $f^{b}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$.

[^0]: Date: October 3, 2018.

