LECTURE 18 MATH 256A

LECTURES BY: PROFESSOR MARK HAIMAN NOTES BY: JACKSON VAN DYKE

1. Adjunction

Consider a continuous map $f: X \to Y$ and let \mathcal{A} be a sheaf on X, and \mathcal{B} be a sheaf on Y. Now we can form a sheaf $f_*\mathcal{A}$ on Y, which is defined to have sections:

$$f_*\mathcal{A}(V) = \mathcal{A}\left(f^{-1}(V)\right)$$

and similarly we can form $f^{-1}\mathcal{B}$ on X, which is defined to have the following stalks:

$$\left(f^{-1}\mathcal{B}\right)_p = \mathcal{B}_{f(p)}$$

But this doesn't tell us anything about the sections. So we say that the sections are locally of the form $f^{-1}(s)$ where s is the section of some open set of Y, and explicitly if we have $s \in \mathcal{B}(V)$, then

$$f^{-1}s \in \left(f^{-1}\mathcal{B}\right)\left(f^{-1}\left(V\right)\right) \subseteq \prod_{p \in f^{-1}(V)} \mathcal{B}_{f(p)}$$

and in particular

$$f^{-1}s = p \mapsto s_{f(p)}$$

The moral is that the direct image functor preserves sections and the inverse image functor preserves stalks.

Remark 1. We can do either construction for a presheaf, and the direct image will still be a presheaf, but the inverse image gives you an actual sheaf.

Theorem 1. f^{-1} is left adjoint to f_* . Equivalently, f_* is right adjoint to f^{-1} .

Proof. This just means if we have a map

$$\varphi: \mathcal{B} \to f_*\mathcal{A}$$

which is an arrow in $\mathbf{Sh}(Y)$, then we have a functorial bijection between such maps and maps

$$\psi: f^{-1}\mathcal{B} \to \mathcal{A}$$

which is of course an arrow in $\mathbf{Sh}(X)$.

First suppose we are given φ . Let $p \in X$ map to $f(p) = q \in Y$. Let $q \in V \subseteq Y$ be an open neighborhood of q, so $U = f^{-1}V$ is an open neighborhood of p. Then for any section $s \in \mathcal{B}(V)$, we can map this to $\varphi(s)$, which is of course in $(f_*\mathcal{A})(V)$. But by definition, this is just $\mathcal{A}(U)$, so we can map this to $\varphi(s)_p \in \mathcal{A}_p$. Alternatively, starting with our original section $s \in \mathcal{A}(V)$ we can map this to $s_q \in \mathcal{B}_q = (f^{-1}\mathcal{B})_p$.

Date: October 3, 2018.

Then we can map this to $\varphi(s)_q \in (f_*A)_q$. But now there is a unique map from this to $\varphi(s)_p$. I.e. the following diagram commutes:

$$\begin{array}{cccc} \mathcal{B}\left(V\right) & \longrightarrow \mathcal{B}_{q} = \left(f^{-1}\mathcal{B}\right)_{p} & \stackrel{s \longmapsto s_{q}}{\downarrow} & \stackrel{s}{\downarrow} & \stackrel$$

Now if we are given $\psi: f^{-1}\mathcal{B} \to \mathcal{A}$, then for $s \in \mathcal{B}(V)$,

$$f^{-1}s \in \left(f^{-1}\mathcal{B}\right)(U)$$
$$\downarrow^{\psi}$$
$$\psi\left(f^{-1}s\right) \in \mathcal{A}\left(U\right) = \left(f_*A\right)(V)$$

Now note that we effectively get the functoriality for free here since $f^{-1}f_*\mathcal{A} \to \mathcal{A}$, which is a morphism in $\mathbf{Sh}(X)$ corresponds to the identity id : $f_*\mathcal{A} \to f_*\mathcal{A}$. The map $p_{\mathcal{A}} : f^{-1}f_*\mathcal{A} \to \mathcal{A}$ is the counit of the adjunction. Similarly the map $p_{\mathcal{B}} : \mathcal{B} \to f_*f^{-1}\mathcal{B}$ is the counit of id : $f^{-1}\mathcal{A} \to f^{-1}\mathcal{B}$ then for $\varphi : \mathcal{B} \to f_*\mathcal{A}$

$$f^{-1}B \xrightarrow{f^{-1}\varphi} f^{-1}f_*A \xrightarrow{p_A} A$$

2. Morphisms of ringed spaces

Recall a ringed space is just a space with a sheaf of rings. Then a morphism of ringed spaces

$$(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$$

is a triple $(f, f^{\flat}, f^{\#})$ where

$$f: X \to Y$$
 $f^{\flat}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ $f^{\#}: f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$

Note that f^{\flat} determines $f^{\#}$ and vice versa, so we don't actually need to specify them separately.

Example 1. Suppose $\mathcal{O}_X \subseteq \operatorname{Fun}(X,k)$ and $\mathcal{O}_Y \subseteq \operatorname{Fun}(Y,k)$ are sheaves of functions. For a continuous map $f: X \to Y$, for any open set $V \subseteq Y$, $(U = f^{-1}V)$ then for any function $a \in \operatorname{Fun}(Y,k)(V)$,

$$a \circ f \in \operatorname{Fun}(X,k)(U) = f_* \operatorname{Fun}(X,k)(V)$$

so this is a map

 $\mathbf{2}$

$$f^{\flat}: \operatorname{Fun}\left(Y,k\right) \to f_*\operatorname{Fun}\left(X,k\right)$$

In particular, if $f^{\flat}(\mathcal{O}_Y) \subseteq f_*\mathcal{O}_X$, then we get $f^{\flat}: \mathcal{O}_Y \to f_*\mathcal{O}_X$.