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1. General theory of affine varieties

Let X = V (F ) and Y = V (G) be two varieties, then clearly X ∩Y = V (F ∪G)
is a variety. Somewhat less obvious is the fact that X ∪ Y = V (F ·G) is a variety,
where F ·G consists of all products of functions in F and functions in G.

In an informal sense, it is clear that kn is n dimensional, and X = V (f) will
generically have dimension n − 1. In some sense, more equations reduce the di-
mension. This will eventually all be worked out using a theory of dimension for
Noetherian schemes, but for now we will keep the discussion informal.

Example 1. The plane itself has dimension 2, and the graph of a polynomial
f is generically a one dimensional curves. Then insisting that two equations are
satisfied, as long they intersect, we get a point. Indeed, to get any point (a, b) we
can just take V (x− a, y − b). This is of course not always true, since not all pairs
of polynomials allow any simultaneous solutions.

Example 2. Note that every new equation does not always decrease the dimension
by 1, for example if we have V (xy), this is the xz plane and the yz plane. Then
introducing xz, we get V (xy, xz) which is the yz plane along with the x axis, which
also has dimension 2.

Fact 1. Introducing k polynomials to an n dimensional variety will be at least
dimension n− k.

We will now write a full list of affine varieties X ⊂ k1 in the line. Of course
we have X = k = V (0) and X = ∅ = V (1). Besides these cases, the only other
potential varieties are finite sets. For some polynomial f , V (f) will always only
consist of a finite set of points. Recall that the polynomials in one variable form a
PID, and therefore a UFD, so we can factor any such polynomial f and just take
the union of the varieties defined by such factors.

Now we will think about subvarieties X ⊂ k2 of the plane. Of course we first have
X = k2 and X = ∅. Then for some polynomial f , consider V (f). The polynomials
in two variables no longer form a PID, but they are still a UFD, so we can factor
f as

f = f1 (x, y)
e1 · · · fk (x, y)

ek

and then as before,

V (f) =
⋃
i

V (fi)
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So all we get are curves in the plane, and finite sets of points. On any curve, the
vanishing locus of any function on that curve is either the whole curve, or some
finite set of points.

2. Maps of varieties

Not only should we talk about the sorts of varieties we can get, but we should also
talk about maps between varieties. A fundamental theme in algebraic geometry is
considering families of varieties, and in particular that we can consider a family of
varieties as a variety itself. Even though we haven’t defined it, consider a map of
varieties f : X → Y . The preimages of points of Y will also be subvarieties of X,
so we can parametrize these subvarieties using points in Y .

Maps also come up when considering algebraic groups. A lot of important groups
are algebraic groups, which are just groups which also happen to be algebraic
varieties. But there needs to be some sort of compatibility between these two
structures in the sense that the group multiplication and inverse map are maps of
algebraic varieties.

So let X ⊆ kn and Y ⊆ km be two algebraic varieties. For φ : X → Y to be
a map of algebraic varieties, we want the coordinates for y = φ (x) to be given by
yi = fi (x1, · · · , xn) for polynomials fi.

We now consider some examples of algebraic groups.

Example 3. The group SLn,

SLn := {A ∈Mn | det (A) = 1}

is contained inMn = kn
2

, and can be viewed as an algebraic variety V (det (X)− 1) =
SLn.

Then multiplication in SLn is just matrix multiplication, and this is indeed given
by a polynomial in the entries of the two matrices which of course maps the sub-

variety SLn×SLn ⊆ k2n
2

to the subvariety SLn ⊆ kn
2

. The inverse map is also a
polynomial map from SLn → SLn so SLn is an algebraic group.

All of the semi-simple Lie groups are algebraic, though this is trickier to see for
some.

Example 4. Consider the group GLn consisting of the invertible matrices X ∈Mn.

This just means det (X) 6= 0, but this isn’t enough to view GLn as a variety in kn
2

,
since it is not defined using polynomials, but rather by insisting that a polynomial
happens to be nonzero. To do this, we need to introduce an extra coordinate to get
coordinates x11, · · · , xn,n, z. Now we can write

GLn = V (z det (X)− 1)

so GLn ⊆ kn
2+1 is an affine subvariety of kn

2+1. One might wonder if it is just

inconvenient to embed GLn as an affine subvariety of kn
2

itself, or if it is in fact
impossible. As it turns out, this is not possible, and n2 + 1 is the minimal such

dimension. We have a projection map kn
2+1 → kn

2

, but this turns out to be

an injective map when restricted to GLn ⊂ kn
2+1 since only one z value can be

associated to an invertible matrix.
Now consider the group multiplication GLn×GLn → GLn. This is clearly an

algebraic map in kn
2

, but we need to check this with the new coordinate. For two
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X,Y ∈ GLn,

z =
1

det (XY )
=

1

det (X)

1

det (Y )

so it turns out fine. The inverse map bringing GLn 3 A 7→ A−1 ∈ GLn also happens
to be an algebraic map, even with the new coordinate.

Example 5. Now we consider an example of a non-affine variety. The simplest such
example is the plane minus the origin k2 \ {(0, 0)}. Since (0, 0) is a subvariety, this
object should be an open subset. And however we end up developing the theory,
we certainly want open subsets of varieties to be varieties. This example cannot be
globally defined by polynomials, but as in lecture 1, we only insisted that varieties
be locally defined by polynomials.

We regard Ux = k2 \ V (x) ⊂ k2 as a variety by adding an extra coordinate v,
and insist that v = 1/x, so V = V (vx− 1) ' Ux, and then similarly we can think
of Uy = k2 \ V (y) ⊂ k2 as a variety by introducing the coordinate w and taking
W = V (wy − 1) ' Uy.

Now the original open set is covered by two open subvarieties. But for this to
make sense, this all needs to be compatible on Ux ∩ Uy. We can again regard
Uxy = k2 \ V (xy) as a variety by introducing the variable z, and considering
Z = V (zxy − 1) ' Uxy.

Now since z = (xy)
−1

, we map Z → V by (z, x, y) 7→ (zy, x, y) and Z → W
according to (z, x, y) 7→ (zx, x, y). Now we can check everything is well defined and
we are done.
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