LECTURE 28
 MATH 256A

LECTURES BY PROFESSOR MARK HAIMAN
 NOTES BY: JACKSON VAN DYKE

Today will be abstract nonsense part two. Recall we have the following theorem:
Theorem 1. A functor $F: \mathbf{S c h}^{o p} \rightarrow$ Set is representable (i.e. $F \cong \underline{\underline{X}}$) iff
(1) F is a sheaf
(2) F can be covered by representable open subfunctors

We can easily see these conditions are necessary, so the content is really showing sufficiency.

1. Subfunctors

1.1. Definitions. Given $W \subset Z$ an open subset ${ }^{1}$ the question is how $\underline{\underline{W}}$ and $\underline{\underline{Z}}$ are related. One way is that since $W \hookrightarrow Z$ is an inclusion of schemes, $\overline{\overline{\text { th}}} \overline{\text { the }} \overline{\bar{Z}}$ corresponding functorial map $\underline{\underline{W}} \rightarrow \underline{\underline{Z}}$ which turns out to be injective as well. This just means $\underline{\underline{W}}(T) \hookrightarrow \underline{\underline{Z}}(T)$ for any T. So given $T \rightarrow W$, we can compose with $W \hookrightarrow Z$, and this determines the map $T \rightarrow Z$ uniquely as in the following diagram:

We can also ask the inverse question: if we are given a map $T \rightarrow Z$, then the corresponding map $T \rightarrow W$ that makes the diagram commute:

might not exist, but if it does it is unique. In particular, this exists iff $\varphi(T) \subseteq W$. We say that $\underline{\underline{W}}$ is a subfunctor of $\underline{\underline{Z}}$. More explicitly,

$$
\underline{\underline{W}}(T)=\{(\varphi: T \rightarrow Z) \in \underline{\underline{Z}}(T) \mid \varphi(T) \subseteq W\}
$$

But now if we take some T^{\prime} which doesn't satisfy this, then we have the following diagram

Date: October 26, 2018.
${ }^{1}$ Or in general, a monomorphism.
which is a fiber square exactly when $\varphi \circ \alpha(T) \subseteq W$ because

But this is equivalent to

$$
\alpha\left(T^{\prime}\right) \subseteq \varphi^{-1}(W)=U
$$

so we have the following:

$$
\underline{\underline{U}}\left(T^{\prime}\right)=\underline{\underline{T}}\left(T^{\prime}\right) \times_{\underline{\underline{Z}}}\left(T^{\prime}\right) \underline{\underline{W}}\left(T^{\prime}\right)
$$

Definition 1. A subfunctor $G \subseteq F$ is open if for every $T \in \mathbf{S c h}$, and $\underline{\underline{T}} \rightarrow F$ (equivalently $f \in F(T)$) we have that $\underline{\underline{T}} \times_{F} G=\underline{\underline{U}}$ for an open $U \subseteq T$.

Given $G \subseteq F$ open, and $\underline{\underline{T}} \rightarrow F$, we now get an open subscheme $U \subseteq T$. But what would need to be the case for $U=T$? As it turns out, this is the case iff $f \in G(T)$. The functorial reason is somehow the same as the geometric one. If $f \in G(T)$, then the morphism factors as

so $\underline{\underline{U}}=\underline{\underline{T}}$ and therefore $U=T$ by Yoneda.

1.2. Lemmas.

Lemma 1. A map of representable functors $\underline{\underline{W}} \rightarrow \underline{\underline{Z}}$ is an open embedding iff $\underline{\underline{W}}$ is an open subfunctor of $\underline{\underline{Z}}$.

Lemma 2. If $G, H \subset F$ are subfunctors, and G is open then $G \cap H \subseteq H$ is also open.

Proof. In this situation we have a functorial diagram:

and then we take $\underline{\underline{U}}$ such that the larger rectangle is a fiber square:

Then the question is whether or not the smaller square on the left is a fiber square, and since this is true for sets it is true here.

1.3. Open subfunctors and covers.

Definition 2. Open subfunctors $G_{\alpha} \subseteq F$ cover F if for every functorial map $\underline{\underline{T}} \rightarrow F$ (equivalently $f \in F(T)$) the open sets $U_{\alpha} \subseteq T$ such that $\underline{\underline{U_{\alpha}}}=G \times_{F} \underline{\underline{T}}$ cover T.

Warning 1. In general

$$
F(T) \neq \bigcup_{\alpha} G_{\alpha}(T)
$$

This is true sometimes though, as in the following example.
Example 1. If $T=\operatorname{Spec} k$, then

$$
F(\operatorname{Spec} k)=\bigcup_{\alpha} G_{\alpha}(\operatorname{Spec} k)
$$

For arbitrary $\underline{\underline{T}} \rightarrow F$ we get these U_{α} and we want to see if they cover T. For any point $p \in T$ we can take the residue field $\mathcal{O}_{T, o} / \mathfrak{m}_{p}=k_{p}$ and then we have a morphism Spec $k_{p} \rightarrow T$ which sends pt $\mapsto p$. Therefore $\underline{\underline{T}}(\operatorname{Spec} k)$ can be thought of as pairs

$$
\underline{\underline{T}}(\operatorname{Spec} k)=\left\{\left(p, k_{p} \hookrightarrow k\right)\right\}
$$

So take any $p \in T$, represent it as a map $\operatorname{Spec} k \rightarrow \underline{\underline{T}}$, then we can just compose this to get $\operatorname{Spec} k \rightarrow F$, so it must factor through U_{α}. Therefore we have

$$
F(\operatorname{Spec} k)=\bigcup_{\alpha} G_{\alpha}(\operatorname{Spec} k)
$$

for all k iff F being covered by the $G_{\alpha} \mathrm{s}$.

2. Proof of the theorem

We now use our results about subfunctors to prove the theorem:
Proof of the theorem. Let $F: \mathbf{S c h}^{\text {op }} \rightarrow$ Set be covered by the G_{α} where $G_{\alpha} \cong X_{\alpha}$. By the lemmas, $G_{\alpha} \cap G_{\beta} \subseteq G_{\alpha}$ is open, and since this is representable as well, $G_{\alpha} \cap G_{\beta}=\underline{\underline{X_{\alpha, \beta}}}$ for some $X_{\alpha, \beta} \subset X_{\alpha}$. Then the diagram is:

and the cocycle condition is that we can always put an $X_{\alpha, \beta, \gamma}$ such that every diamond is a fiber square. So now we get X by gluing, but we aren't sure that this is actually F.

We know all of the $X_{\alpha}=G_{\alpha} \hookrightarrow F$, and then Yoneda gives us an identification $\underline{\underline{X_{\alpha}}} \rightarrow F$ with some $f_{\alpha} \overline{\overline{\epsilon \in}} F\left(X_{\alpha}\right)$ which are compatible on $X_{\alpha} \cap X_{\beta}$. Now the fact that F is a sheaf means there is some $f \in F(X)$ which gives us $\underline{\underline{X}} \rightarrow F$ which
restricts to all of the X_{α} to give $f_{\alpha}: \underline{\underline{X_{\alpha}}} \rightarrow F$. For $g \in F(T)$ this corresponds to $\underline{\underline{T}} \rightarrow F$ and since the $U_{\alpha} \subset T$ cover, we have

$$
\begin{aligned}
\underline{\underline{U}}_{\alpha} & \longrightarrow \\
\ddots & \\
\ddots & \\
& \\
& \underline{\underline{X_{\alpha}}}
\end{aligned} \rightarrow X
$$

so we get a map $T \rightarrow X$. Then we have to check these are actually the inverses of one another.

We will use this theorem a few times, it's a handy thing to have around. One thing we will use this for is to show fiber products of schemes exist. That is, we will show that given the diagram:

there is some $\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$ which is representable. Instead of doing some messy gluing, we can use this theorem.

