LECTURE 28 MATH 256A

LECTURES BY PROFESSOR MARK HAIMAN NOTES BY: JACKSON VAN DYKE

Today will be abstract nonsense part two. Recall we have the following theorem:

Theorem 1. A functor $F : \mathbf{Sch}^{op} \to \mathbf{Set}$ is representable (i.e. $F \cong \underline{X}$) iff

(1) F is a sheaf

(2) F can be covered by representable open subfunctors

We can easily see these conditions are necessary, so the content is really showing sufficiency.

1. Subfunctors

1.1. **Definitions.** Given $W \subset Z$ an open subset¹ the question is how \underline{W} and \underline{Z} are related. One way is that since $W \hookrightarrow Z$ is an inclusion of schemes, there is a corresponding functorial map $\underline{W} \to \underline{Z}$ which turns out to be injective as well. This just means $\underline{W}(T) \hookrightarrow \underline{Z}(T)$ for any T. So given $T \to W$, we can compose with $W \hookrightarrow Z$, and this determines the map $T \to Z$ uniquely as in the following diagram:

We can also ask the inverse question: if we are given a map $T \to Z$, then the corresponding map $T \to W$ that makes the diagram commute:

might not exist, but if it does it is unique. In particular, this exists iff $\varphi(T) \subseteq W$. We say that <u>W</u> is a subfunctor of <u>Z</u>. More explicitly,

$$\underline{\underline{W}}\left(T\right) = \left\{ \left(\varphi:T \rightarrow Z\right) \in \underline{\underline{Z}}\left(T\right) \mid \varphi\left(T\right) \subseteq W \right\}$$

But now if we take some T' which doesn't satisfy this, then we have the following diagram

Date: October 26, 2018.

¹ Or in general, a monomorphism.

which is a fiber square exactly when $\varphi \circ \alpha(T) \subseteq W$ because

But this is equivalent to

$$\alpha\left(T'\right)\subseteq\varphi^{-1}\left(W\right)=U$$

so we have the following:

$$\underline{\underline{U}}(T') = \underline{\underline{T}}(T') \times_{\underline{Z}(T')} \underline{\underline{W}}(T')$$

Definition 1. A subfunctor $G \subseteq F$ is open if for every $T \in \mathbf{Sch}$, and $\underline{\underline{T}} \to F$ (equivalently $f \in F(T)$) we have that $\underline{\underline{T}} \times_F G = \underline{\underline{U}}$ for an open $U \subseteq T$.

Given $G \subseteq F$ open, and $\underline{T} \to F$, we now get an open subscheme $U \subseteq T$. But what would need to be the case for U = T? As it turns out, this is the case iff $f \in G(T)$. The functorial reason is somehow the same as the geometric one. If $f \in G(T)$, then the morphism factors as

so $\underline{\underline{U}} = \underline{\underline{T}}$ and therefore U = T by Yoneda.

1.2. Lemmas.

Lemma 1. A map of representable functors $\underline{W} \to \underline{Z}$ is an open embedding iff \underline{W} is an open subfunctor of \underline{Z} .

Lemma 2. If $G, H \subset F$ are subfunctors, and G is open then $G \cap H \subseteq H$ is also open.

Proof. In this situation we have a functorial diagram:

$$\begin{array}{ccc} G \cap H \longrightarrow G \\ \downarrow & & \downarrow \\ H \longrightarrow F \end{array}$$

and then we take \underline{U} such that the larger rectangle is a fiber square:

Then the question is whether or not the smaller square on the left is a fiber square, and since this is true for sets it is true here. $\hfill\square$

 $\mathbf{2}$

LECTURE 28

1.3. Open subfunctors and covers.

Definition 2. Open subfunctors $G_{\alpha} \subseteq F$ cover F if for every functorial map $\underline{\underline{T}} \to F$ (equivalently $f \in F(T)$) the open sets $U_{\alpha} \subseteq T$ such that $\underline{\underline{U}}_{\alpha} = G \times_F \underline{\underline{T}}$ cover T.

Warning 1. In general

$$F(T) \neq \bigcup_{\alpha} G_{\alpha}(T)$$

This is true sometimes though, as in the following example.

Example 1. If $T = \operatorname{Spec} k$, then

$$F(\operatorname{Spec} k) = \bigcup_{\alpha} G_{\alpha} \operatorname{(Spec} k)$$

For arbitrary $\underline{\underline{T}} \to F$ we get these U_{α} and we want to see if they cover T. For any point $p \in T$ we can take the residue field $\mathcal{O}_{T,o}/\mathfrak{m}_p = k_p$ and then we have a morphism Spec $k_p \to T$ which sends $pt \mapsto p$. Therefore $\underline{\underline{T}}(\operatorname{Spec} k)$ can be thought of as pairs

$$\underline{T}(\operatorname{Spec} k) = \{(p, k_p \hookrightarrow k)\}$$

So take any $p \in T$, represent it as a map Spec $k \to \underline{T}$, then we can just compose this to get Spec $k \to F$, so it must factor through U_{α} . Therefore we have

$$F(\operatorname{Spec} k) = \bigcup_{\alpha} G_{\alpha}(\operatorname{Spec} k)$$

for all k iff F being covered by the G_{α} s.

2. Proof of the theorem

We now use our results about subfunctors to prove the theorem:

Proof of the theorem. Let $F : \mathbf{Sch}^{\mathrm{op}} \to \mathbf{Set}$ be covered by the G_{α} where $G_{\alpha} \cong \underline{X_{\alpha}}$. By the lemmas, $G_{\alpha} \cap G_{\beta} \subseteq G_{\alpha}$ is open, and since this is representable as well, $G_{\alpha} \cap G_{\beta} = X_{\alpha,\beta}$ for some $X_{\alpha,\beta} \subset X_{\alpha}$. Then the diagram is:

and the cocycle condition is that we can always put an $X_{\alpha,\beta,\gamma}$ such that every diamond is a fiber square. So now we get X by gluing, but we aren't sure that this is actually F.

We know all of the $\underline{X_{\alpha}} = G_{\alpha} \hookrightarrow F$, and then Yoneda gives us an identification $\underline{X_{\alpha}} \to F$ with some $f_{\alpha} \in F(X_{\alpha})$ which are compatible on $X_{\alpha} \cap X_{\beta}$. Now the fact that F is a sheaf means there is some $f \in F(X)$ which gives us $\underline{X} \to F$ which

restricts to all of the X_{α} to give $f_{\alpha} : \underline{X_{\alpha}} \to F$. For $g \in F(T)$ this corresponds to $\underline{\underline{T}} \to F$ and since the $U_{\alpha} \subset T$ cover, we have

$$\underbrace{\underline{U}}_{\alpha} \longrightarrow F$$

$$\widehat{\underline{X}}_{\alpha} \uparrow$$

$$\underbrace{\underline{X}}_{\alpha} \longrightarrow X$$

so we get a map $T \to X$. Then we have to check these are actually the inverses of one another.

We will use this theorem a few times, it's a handy thing to have around. One thing we will use this for is to show fiber products of schemes exist. That is, we will show that given the diagram:

there is some $\underline{X} \times \underline{\underline{S}} \underline{Y}$ which is representable. Instead of doing some messy gluing, we can use this theorem.