LECTURE 29

LECTURE BY: PROFESSOR MARK HAIMAN
NOTES BY: JACKSON VAN DYKE
\qquad

1. Fiber product

Let X and Y be schemes over S. Then we want to consider the fiber product $\underline{\underline{Z}} \cong \underline{\underline{C}} \times \underline{\underline{S}} \underline{\underline{Y}}$ which fits into the square

To see this is representable, we will apply the theorem from last time. Recall this said that in order for a functor $\underline{\underline{Z}}$ to be representable, we need it to be a sheaf, and we need it to be covered by representable open subfunctors.

Proof. To see if $\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$ is a sheaf, note we have

$$
U \rightarrow X(U) \times_{S(U)} Y(U) \subseteq X(U) \times Y(U)
$$

and the equalizer condition $X, Y \rightarrow S$ is a local condition since S is a sheaf.
To check that this is covered by representable open subfunctors, notice that we have the two open embeddings:

for $U \subseteq S$ open.
Claim 1. $\underline{\underline{W}} \times_{\underline{\underline{U}}}^{\underline{W}}$ is an open subfunctor of $\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$
Given $\underline{\underline{T}} \rightarrow \underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$ we want something such that

$$
\underline{\underline{T}} \leftarrow ? \rightarrow \underline{\underline{V}} \times_{\underline{\underline{U}}}^{\underline{\underline{W}}}
$$

We have that $\varphi \in \underline{\underline{T}}\left(T^{\prime}\right)$ is in ? iff

$$
\varphi\left(T^{\prime}\right) \subseteq \alpha^{-1}(V) \cap \beta^{-1}(W)
$$

[^0]Such $\underline{\underline{V}} \times_{\underline{\underline{U}}}^{\underline{\underline{W}}} \underline{\underline{1}}$ for U, V, W affine cover $\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$ Since for $(\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}})(\operatorname{Spec} k)$,

Now we're done, because we showed we can cover $\underline{\underline{X}} \times \underline{\underline{S}} \underline{\underline{Y}}$ on the level of sets.
Now suppose A and B are R-algebras.
Claim 2. $X \times_{S} Y=\operatorname{Spec}\left(A \otimes_{R} B\right)$.
Proof. If we have maps

$$
T \rightarrow \operatorname{Spec}\left(A \otimes_{R} B\right)
$$

then this means

$$
A \otimes_{R} B \rightarrow \mathcal{O}_{T}(T)
$$

Also, if we have

this implies there exists a map $R \rightarrow \mathcal{O}_{T}(T)$, so we have R-algebra homomorphisms $A \rightarrow \mathcal{O}_{T} T$ and $B \rightarrow \mathcal{O}_{T}(T)$.

Now we want to show that these things are equivalent. This follows from the universal property. Explicitly we have a coproduct of R-algebras

Note that $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right):=a a^{\prime} \otimes b b^{\prime}$ is well-defined since the RHS is multi-linear over R. Then we can map:

$$
\begin{array}{cc}
A \longrightarrow A \otimes_{R} B & B \longrightarrow A \otimes_{R} B \\
a \longrightarrow a \otimes 1 & b \longrightarrow 1 \otimes b
\end{array}
$$

so we can send

$$
\begin{aligned}
& A \otimes_{R} B \longrightarrow \\
& \alpha \otimes \beta \longrightarrow \alpha(a) \beta(b)
\end{aligned}
$$

Exercise 1. Show that $X \times_{S} Y$ is the product in Sch / S.
Example 1. For $S=\operatorname{Spec} k, X$ and Y are varieties over k.

Let $R=\mathcal{O}(X)$ and $S=\mathcal{O}(Y), X^{S}:=\operatorname{Spec} R$ and $Y^{S}:=\operatorname{Spec} S$. Note that:

$$
\left(X^{S}\right)_{\mathrm{cl}}=C=\{\operatorname{Spec} k \longrightarrow \operatorname{Spec} R\}
$$

In this case we have the following:

$$
\left(X^{S} \times_{\operatorname{Spec} k} Y^{S}\right)_{\mathrm{cl}}=X \times Y
$$

This is obvious, there's no need for the nullstellensatz. What is less obvious is the fact that:

$$
\operatorname{Spec}(\mathcal{O}(X \times Y))=X^{S} \times Y^{S}
$$

So, is

$$
\mathcal{O}(X+Y) \cong \mathcal{O}(X) \otimes_{R} \mathcal{O}(Y) ?
$$

Take $X \subseteq k^{m}$ and $Y \subseteq k^{n}$. Then

$$
\begin{array}{rr}
\mathcal{O}\left(k^{m}\right)=k\left[x_{1}, \cdots, x_{m}\right] & \mathcal{O}\left(k^{n}\right)=k\left[y_{1}, \cdots, y_{n}\right] \\
\mathcal{I}(X)=\left(f_{1}, \cdots, f_{k}\right) & \mathcal{I}(Y)=\left(g_{1}, \cdots, g_{l}\right)
\end{array}
$$

and therefore

$$
\mathcal{O}(X) \otimes_{R} \mathcal{O}(Y)=k\left[x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{n}\right] / J
$$

where we have set:

$$
J=\left(f_{1}(\underline{x}) \cdots f_{k}(\underline{x}), g(\underline{y}) \cdots g_{l}(\underline{Y})\right)
$$

which implies $V(J)=X \times Y=k^{m} \times k^{n}$.
In general,

$$
X^{S} \times Y^{S}=\operatorname{Spec}\left(\mathcal{O}(X) \otimes_{R} \mathcal{O}(Y)\right)
$$

contains

$$
\left(X^{S} \times_{\text {Spec }} Y^{S}\right)_{\text {red }}=\operatorname{Spec}\left(\mathcal{O}(X) \otimes_{R} \mathcal{O}(Y) / \sqrt{0}\right)
$$

If A and B are reduced k-algebras ($k \mathrm{dg}$ closed), then $A \otimes_{k} B$ is reduced.
Example 2. We offer an example of why this is nontrivial. Let $\Gamma k=p$, and $\alpha \in k$ such that $\alpha \notin k^{p}$, i.e. α is a p th root. Then

$$
k=k\left[\alpha^{1 / p}\right]=k[x] /\left(x^{p}-\alpha\right)
$$

and then

$$
k \otimes_{k} k=k[x] /\left(x^{p}-\alpha\right)=k[x] /\left(x-\alpha^{1 / p}\right)^{p}
$$

$x-\alpha^{1 / p}$ is nilpotent, so k must be a perfect field, i.e. it must have a p th root.

[^0]: Date: October 29, 2018.

