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1. Fiber products

We will explore some theorems about fiber products today. One thing that is
tricky, is that it isn’t generally the same as the fiber product of the underlying
topological spaces.

If we have a diagram of schemes

Z Y

Y T

where Z = X ×T Y then this is of course also a diagram of topological spaces.
There is a unique map from Z to the topological fiber product just by the universal
property, but this is not bijective in general.

Example 1. In particular if we take A1
k ×k A1

k, then since k [x]⊗k k [y] = k [x, y],
we have A1

k ×k A1
k = A2

k which maps to the topological fiber product.

Example 2. Consider SpecC ×SpecR SpecC. Topologically this is just the fiber
product of two points over a point, which is of course a point. But as schemes this
fiber product is Spec (C⊗R C) = V

(
x2 + 1

)
⊆ A1

C which has two points.

So this unique map isn’t injective even if X → T and Y → T are injective.

Theorem 1. The unique map from Z → X ×top
T Y is always surjective.

Proof. Whenever we have a point x ∈ X of a scheme, we can consider the residue
field at x OX,X/mx = k (x). Then to give a morphism ϕ : SpecK → X is exactly
the same as giving a point x ∈ X and a field extension of k (x) over K. This is
because any such ϕ : pt 7→ x ∈ X gives us ϕ# : OX,x → K, which has to send
the maximal ideal in this ring to the zero ideal in K, so the kernel has to be the
maximal ideal. I.e. it has to factor through k (X) to be a morphism of locally
ringed spaces:

OX,x K

k (x)

Conversely, we have this picture and we can define ϕ# this way and that’s a mor-
phism.
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So to prove this, look at x ∈ X and y ∈ Y which both map to the same t ∈ T .
Then given these maps X → T and Y → T we get a map OT,t → OT,x which
induces an extension k (t) ↪→ k (x). Similarly for Y we get k (t) ↪→ k (y). So we get

k (x)

k (t) K

k (y)

each of these extensions give us the diagram:

SpecK

X Z Y

T

�

2. Monomorphisms

Definition 1. A morphism ϕ : X → Y in any category is a monomorphism
iff the corresponding functorial map of the functors is injective. I.e. for all T ,
X (T ) ↪→ Y (T ).

More explicitly, two elements in X (T ) are just maps α, β : T → X, and then
we compose with ϕ to get maps to Y , so the above is equivalent to saying that
ϕ ◦ α = ϕ ◦ β implies that α = β.

Example 3. In Top and Grp the monomorphisms are exactly the injective maps.
In Sch every monomorphism will be injective, however not every injective morphism
of schemes will be a monomorphism.

There are three general types of examples of monomorphisms for schemes:

Example 4. Consider an open embedding U ↪→ X of schemes. We really have the
identification:

U (T ) = {ϕ : T → X |ϕ (T ) ⊆ U} ↪→ X (T )

are monomorphism.

Example 5. Consider a closed embedding i : Z ↪→ X. This means that topologi-
cally it’s a closed embedding, but also that i# : i−1OX � OZ is surjective.

If we have two maps α, β : T → Z, then since i is an injective map, if i◦α = i◦β
then α and β are the same as maps of sets. They might not be the same as maps of
ringed spaces, so we still have to check this. For any t ∈ T , α (t) = β (t) = x ∈ Z ⊆
X. Then i#x : OX,x → OZ,x and we have α#

t and β#
t both mapping OZ,x → OT,t.

So if α#
t ◦ i# = β#

t ◦ i#, then since this is a closed embedding, we have α#
t = β#

t

as desired.
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Example 6. The third example is as follows. Consider S−1R for S ⊆ R some
multiplicative subset. Then we claim SpecS−1R→ SpecR is a monomorphism. In
particular, for x ∈ X = SpecR we get a map from R → OX,x = Rx so we get a
map SpecOX,x → SpecR which is a monomorphism.

Let’s see why this is a monomorphism. We could do this by going back to stalks,
but we will use the fact that we know exactly how to characterize morphisms from
any scheme to an affine scheme. We know morphism T → SpecR are the same
as morphisms R → OT (T ), and the same for S−1R. So given two morphisms
α, β : T → SpecS−1R which compose with j to give the same maps to R, then this
means we have two maps α̃, β̃ : S−1R→ OT (T ) and j̃ : R→ S−1R, then it follows

from the universal property of S−1R that α̃ = β̃.

Proposition 1. Monomorphisms of schemes are injective.

Proof. Oddly enough, the reason for this is that the map from a fiber product to
the topological fiber product is surjective. Let j : Y → X be a monomorphism.
Think of Y as some sort of subscheme of X. Consider y, y′ ∈ Y such that j (y) =

j (y′) = x. The topological fiber product Y ×X Y � Y ×top
X Y , so now consider

(y, y′) ∈ Y ×top
X Y . We have the usual diagram:

Z

Y Y

X

p2

p1

j

j

so p1 = p2 since j is a monomorphism, so Z = Y , so y = y′. �

If we have a map f : Y → X and we form any kind of fiber product

Y ×X T Y

T X

f ′ f

f ′ is the base extension of f . Then it is a general category theoretic fact that f being
a monomorphism implies that f ′ is a monomorphism. Therefore monomorphisms
are universally injective.

Consider a map f : Y → X, and x ∈ X. Then there is a fiber f−1 (x) which is
a subset of Y , which isn’t necessarily closed since x might not be closed. Now we
can ask if this space is somehow a scheme.
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