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Recall we left off considering the following lemma:

Lemma 1. For any commutative ring R, consider π : A1
R → Spec (R). For any

locally closed subset ∅ 6= Z ⊆ A1
R, the image π (Z) contains a nonempty locally

closed subset of SpecR.

Proof. WLOG we can make Z smaller, so we can assume Z is irreducible. Then
it’s open in its closure, but we can pass to a basic open subset Xh where X is an
irreducible closed subset of SpecR, so Z = SpecB for the ring B = R [x]

[
f−1

]
/Q

for some prime ideal Q. If we intersect Q ∩ R we get the image of this in SpecR,
and if this is nonzero, we can mod out by this as well and replace R by R/ (Q ∩R).
So WLOG we can also assume Q∩R = 0, so R ↪→ B and R is an integral domain.

Now consider the fiber of Z over the generic point of SpecR. We can describe
this as just being Spec (K ⊗R B) where K is the fraction field K = K (R). This
fiber is nonempty since this ring is nonzero, so this is a nonempty, locally closed
subset of the affine line A1

k, but we know A1
k is Jacobson. Therefore it contains a

closed point, which corresponds to an ideal M ←[ (g (x)) ⊂ K [x] where g is a monic
irreducible polynomial.

We can write g (x) = f (x) /a for f (x) ∈ R [x] and 0 6= a ∈ R. Now we have
that M ∈ V (f) ∩Z, so in particular this is nonempty, so WLOG we might as well
replace Z with V (f) ∩ Z, in other words f (x) ∈ Q to begin with.

But just as we are allowed to make Z smaller, we can make SpecR smaller, i.e. we
can localize R

[
a−1

]
, so we can assume f (x) ∈ R [x] is monic, and by construction

it’s irreducible. Now K [x] / (f (x)) is a field, and this h (x) is a polynomial in R [x],
but it is also a polynomial in K [x], and in particular it is nonzero in K [x] / (f (x)),
because otherwise f divides h, and since Z∩V (h) = ∅, we would have V (f)∩Z = ∅
which is a contradiction. Therefore we can invert this as well, so say h (x) r (x) ≡ 1
mod f (x) in K [x]. Now we can write r (x) = s (x) /b where s (x) ∈ R [x] and b ∈ R,
and then this is saying that h (x) s (x) ≡ b (mod f (x)) in R [x]. But now we can
invert b, so WLOG b−1 ∈ R, and now we have that h (x) is invertible mod f (x) in

R [x], i.e. h (x)
−1 ∈ R [x] / (f (x)).

Now f (x) ∈ Q, so B = R [x] /Q̂ without inverting h. Now this is a quotient
of R [x], i.e. B � R [x] / (f (x)). So finally, we have R ↪→ B, Z = SpecB, and
B � R [x] / (f (x)), which implies B is a f.g. R-module since f (x) being of degree
d, i.e. f (x) = xd+ lower terms, means the set of monomials in

{
1, x, · · · , xd−1

}
generate B as an R-module.

Now by Nakayama, this implies that SpecB � SpecR, so we are done. �
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1. Relationship between schemes lft and varieties

Now we have a nice theorem which tells us that schemes locally of finite type
over a Jacobson scheme look like the Sober Jacobson side of this picture.

Theorem 1. For f : X → Y lft, and Y Jacobson,

(i) X is Jacobson
(ii) f (Xcl) ⊆ Ycl

(iii) If x ∈ Xcl, and y = f (x), then K (y) ↪→ K (x) is a finite algebraic exten-
sion.

Let k = k, and let X ⊆ kn be a classical algebraic variety. Then O (X) =
k [x1, · · · , xn] /I (X), and we want to consider Y = SpecO (X). Note also that we
know O (X) is a finitely generated k-algebra, so Y → Spec k is lft, so anything lft
over a field is Jacobson. Then for all y ∈ Ycl, k (y) = k. This is saying that for all
maximal ideals m ⊆ k [x1, · · · , xn], we have k [x] /m ' k, which is (the weak form
of) Hilbert’s Nullstellensatz.

Now notice that the closed points of Y , are exactly the k points, which are exactly
X: Ycl = Y (k) ∼= X. The correspondence is that a k-algebra homomorphism
ϕ : O (X) → k corresponds to the point a ∈ X where ϕ = eva. For any subset
I ⊆ O (X), we have V (I) ⊆ X, but we also have V (I) ⊆ Y , and if we look at the
closed points V (I)cl ⊆ Ycl, then clearly X ' Ycl. This shows us that Y (k) ∼= X is
a homeomorphism.

So this is looking good, Y is a Jacobson sober space, X is T 1 space homeomorphic
to closed points of Y , but we have complete equivalence between such spaces, so

X = Ycl Y = Sob (X) .

In particular, i : X → Y is a quasi-homeomorphism, so

Sh (X) Sh (Y )
i∗

i−1

and these things have the same sheaf theory.
Now we want to see the structure sheaves are actually the same sheaves under this

equivalence. On the X side we have OX (U). Recall OX (U) consists of functions
U → k locally of the form f = g/h on Xh. On the Y side we have OY . These
things are somehow similar, but it’s not obvious they’re the same. We defined OY

in terms of stalks and germs, but we also had a theorem that OY (Yh) = R
[
h−1

]
.

Restriction extends uniquely to a map R
[
h−1

]
→ OX (Xh). And we claim, that

this is in fact injective. The kernel consists of functions g/hn 7→ 0 ∈ OX (Xh). This
just means g 7→ 0 ∈ OX (Xh), in other words Xh ⊆ V (g), but Xh := X \ V (h),
which is saying X ⊆ V (g)∪V (h), in other words gh = 0 everywhere, which means
g = 0 ∈ R

[
h−1

]
so this is injective.

Now we compare stalks at the closed points x ∈ Xcl. On the X side we have
OX,x := lim−→OX (Xg) for x ∈ Xh and on the Y side we have OY,x = Rm(x). So by
construction OY,x � OX,x, but it’s also injective since everything in OY,x which
maps to 0 ∈ OX,x must be 0 in some R

[
h−1

]
, possibly smaller. This is the canonical

map i−1 : OY → OX .
So at this point we have X = Ycl and Y = Sob (X), but we also have

OX OY

i∗

i−1
.
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