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Recall we left off considering the following lemma:

Lemma 1. For any commutative ring R, consider m : A}% — Spec (R). For any
locally closed subset O # Z C Ak, the image 7 (Z) contains a nonempty locally
closed subset of Spec R.

Proof. WLOG we can make Z smaller, so we can assume Z is irreducible. Then
it’s open in its closure, but we can pass to a basic open subset X; where X is an
irreducible closed subset of Spec R, so Z = Spec B for the ring B = R[z] [f~*] /Q
for some prime ideal Q. If we intersect Q N R we get the image of this in Spec R,
and if this is nonzero, we can mod out by this as well and replace R by R/ (Q N R).
So WLOG we can also assume QN R =0, so R — B and R is an integral domain.

Now consider the fiber of Z over the generic point of Spec R. We can describe
this as just being Spec (K ®pr B) where K is the fraction field K = K (R). This
fiber is nonempty since this ring is nonzero, so this is a nonempty, locally closed
subset of the affine line A}, but we know A}c is Jacobson. Therefore it contains a
closed point, which corresponds to an ideal M < (g (z)) C K [x] where g is a monic
irreducible polynomial.

We can write g (z) = f(z) /a for f(x) € R[z] and 0 # a € R. Now we have
that M € V (f) N Z, so in particular this is nonempty, so WLOG we might as well
replace Z with V (f) N Z, in other words f () € @ to begin with.

But just as we are allowed to make Z smaller, we can make Spec R smaller, i.e. we
can localize R [a‘l], so we can assume f (x) € R [z] is monic, and by construction
it’s irreducible. Now K [x] / (f (x)) is a field, and this A (z) is a polynomial in R [z],
but it is also a polynomial in K [z], and in particular it is nonzero in K [z] / (f (z)),
because otherwise f divides h, and since ZNV (h) = ), we would have V (f)NZ =0
which is a contradiction. Therefore we can invert this as well, so say h (z)r (z) =1
mod f (z) in K [z]. Now we can write r (z) = s (z) /b where s (z) € R[x] and b € R,
and then this is saying that h(x)s(z) = b (mod f(x)) in R[z]. But now we can
invert b, so WLOG b~! € R, and now we have that h () is invertible mod f (z) in
R[], ie. h(z)"' € Rla]/ (f (x)).

Now f(x) € Q, so B = R[z]/Q without inverting h. Now this is a quotient
of Rlz], i.e. B - R[z]/(f(x)). So finally, we have R — B, Z = Spec B, and
B — Rz]/ (f (z)), which implies B is a f.g. R-module since f (z) being of degree

d, ie. f(z)= %+ lower terms, means the set of monomials in {l,x, e ,xd_l}
generate B as an R-module.
Now by Nakayama, this implies that Spec B — Spec R, so we are done. ([
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1. RELATIONSHIP BETWEEN SCHEMES LFT AND VARIETIES

Now we have a nice theorem which tells us that schemes locally of finite type
over a Jacobson scheme look like the Sober Jacobson side of this picture.

Theorem 1. For f: X = Y Ift, and Y Jacobson,
(i) X is Jacobson
(“) f (Xcl) CYy
(i) If x € Xy, and y = f (z), then K (y) — K (z) is a finite algebraic exten-
sion.

Let k = k, and let X C k™ be a classical algebraic variety. Then O (X) =
kl[z1, - ,z,) /T (X), and we want to consider Y = Spec O (X). Note also that we
know O (X) is a finitely generated k-algebra, so Y — Speck is 1Ift, so anything 1ft
over a field is Jacobson. Then for all y € Y, k (y) = k. This is saying that for all
maximal ideals m C k [z, - ,x,], we have k[z] /m ~ k, which is (the weak form
of) Hilbert’s Nullstellensatz.

Now notice that the closed points of Y, are exactly the k points, which are exactly
X: Yq = Y (k) 2 X. The correspondence is that a k-algebra homomorphism
¢ : O(X) — k corresponds to the point a € X where ¢ = ev,. For any subset
I CO(X), we have V (I) C X, but we also have V (I) C Y, and if we look at the
closed points V' (I). C Y, then clearly X ~ Y;. This shows us that Y (k) = X is
a homeomorphism.

So this is looking good, Y is a Jacobson sober space, X is T space homeomorphic
to closed points of Y, but we have complete equivalence between such spaces, so

X =Yy Y =Sob (X) .
In particular, i : X — Y is a quasi-homeomorphism, so

Sh (X) = Sh(Y)
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and these things have the same sheaf theory.

Now we want to see the structure sheaves are actually the same sheaves under this
equivalence. On the X side we have Ox (U). Recall Ox (U) consists of functions
U — k locally of the form f = g/h on Xj. On the Y side we have Oy. These
things are somehow similar, but it’s not obvious they’re the same. We defined Oy
in terms of stalks and germs, but we also had a theorem that Oy (V},) = R [h™!].
Restriction extends uniquely to a map R [h™!] — Ox (X;). And we claim, that
this is in fact injective. The kernel consists of functions g/h"™ — 0 € Ox (X}). This
just means g — 0 € Ox (X}), in other words X5, C V (g), but X == X \ V (h),
which is saying X C V (g) UV (h), in other words gh = 0 everywhere, which means
g=0€R [h_l} so this is injective.

Now we compare stalks at the closed points z € X.. On the X side we have
Ox = lig@x (Xy) for x € X, and on the Y side we have Oy, = Ry(s). So by
construction Oy, — Ox ., but it’s also injective since everything in Oy, which
maps to 0 € Ox , must be 0 in some R [h_l] , possibly smaller. This is the canonical
map i1 : Oy — Ox.

So at this point we have X = Y and Y = Sob (X)), but we also have

Ox — Oy
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