LECTURE 37 MATH 256A

LECTURES BY: PROFESSOR MARK HAIMAN NOTES BY: JACKSON VAN DYKE

Recall we left off considering the following lemma:

Lemma 1. For any commutative ring R, consider $\pi : \mathbb{A}^1_R \to \operatorname{Spec}(R)$. For any locally closed subset $\emptyset \neq Z \subseteq \mathbb{A}^1_R$, the image $\pi(Z)$ contains a nonempty locally closed subset of Spec R.

Proof. WLOG we can make Z smaller, so we can assume \overline{Z} is irreducible. Then it's open in its closure, but we can pass to a basic open subset X_h where X is an irreducible closed subset of Spec R, so Z = Spec B for the ring $B = R[x][f^{-1}]/Q$ for some prime ideal Q. If we intersect $Q \cap R$ we get the image of this in Spec R, and if this is nonzero, we can mod out by this as well and replace R by $R/(Q \cap R)$. So WLOG we can also assume $Q \cap R = 0$, so $R \hookrightarrow B$ and R is an integral domain.

Now consider the fiber of Z over the generic point of Spec R. We can describe this as just being Spec $(K \otimes_R B)$ where K is the fraction field K = K(R). This fiber is nonempty since this ring is nonzero, so this is a nonempty, locally closed subset of the affine line \mathbb{A}^1_k , but we know \mathbb{A}^1_k is Jacobson. Therefore it contains a closed point, which corresponds to an ideal $M \leftrightarrow (g(x)) \subset K[x]$ where g is a monic irreducible polynomial.

We can write g(x) = f(x)/a for $f(x) \in R[x]$ and $0 \neq a \in R$. Now we have that $M \in V(f) \cap Z$, so in particular this is nonempty, so WLOG we might as well replace Z with $V(f) \cap Z$, in other words $f(x) \in Q$ to begin with.

But just as we are allowed to make Z smaller, we can make Spec R smaller, i.e. we can localize $R[a^{-1}]$, so we can assume $f(x) \in R[x]$ is monic, and by construction it's irreducible. Now K[x] / (f(x)) is a field, and this h(x) is a polynomial in R[x], but it is also a polynomial in K[x], and in particular it is nonzero in K[x] / (f(x)), because otherwise f divides h, and since $Z \cap V(h) = \emptyset$, we would have $V(f) \cap Z = \emptyset$ which is a contradiction. Therefore we can invert this as well, so say $h(x) r(x) \equiv 1 \mod f(x)$ in K[x]. Now we can write r(x) = s(x) / b where $s(x) \in R[x]$ and $b \in R$, and then this is saying that $h(x) s(x) \equiv b \pmod{f(x)}$ in R[x]. But now we can invert b, so WLOG $b^{-1} \in R$, and now we have that h(x) is invertible mod f(x) in R[x], i.e. $h(x)^{-1} \in R[x] / (f(x))$.

Now $f(x) \in Q$, so $B = R[x]/\hat{Q}$ without inverting h. Now this is a quotient of R[x], i.e. $B \twoheadrightarrow R[x]/(f(x))$. So finally, we have $R \hookrightarrow B$, Z = Spec B, and $B \twoheadrightarrow R[x]/(f(x))$, which implies B is a f.g. R-module since f(x) being of degree d, i.e. $f(x) = x^d + \text{lower terms}$, means the set of monomials in $\{1, x, \dots, x^{d-1}\}$ generate B as an R-module.

Now by Nakayama, this implies that Spec $B \rightarrow \text{Spec } R$, so we are done. \Box

Date: November 28, 2018.

1. Relationship between schemes LFT and varieties

Now we have a nice theorem which tells us that schemes locally of finite type over a Jacobson scheme look like the Sober Jacobson side of this picture.

Theorem 1. For $f : X \to Y$ lft, and Y Jacobson,

- (i) X is Jacobson
- (*ii*) $f(X_{cl}) \subseteq Y_{cl}$
- (iii) If $x \in X_{cl}$, and y = f(x), then $K(y) \hookrightarrow K(x)$ is a finite algebraic extension.

Let $k = \overline{k}$, and let $X \subseteq k^n$ be a classical algebraic variety. Then $\mathcal{O}(X) = k [x_1, \dots, x_n] / \mathcal{I}(X)$, and we want to consider $Y = \operatorname{Spec} \mathcal{O}(X)$. Note also that we know $\mathcal{O}(X)$ is a finitely generated k-algebra, so $Y \to \operatorname{Spec} k$ is lft, so anything lft over a field is Jacobson. Then for all $y \in Y_{cl}$, k(y) = k. This is saying that for all maximal ideals $\mathfrak{m} \subseteq k [x_1, \dots, x_n]$, we have $k [\underline{x}] / \mathfrak{m} \simeq k$, which is (the weak form of) Hilbert's Nullstellensatz.

Now notice that the closed points of Y, are exactly the k points, which are exactly $X: Y_{cl} = Y(k) \cong X$. The correspondence is that a k-algebra homomorphism $\varphi : \mathcal{O}(X) \to k$ corresponds to the point $a \in X$ where $\varphi = ev_a$. For any subset $I \subseteq \mathcal{O}(X)$, we have $V(I) \subseteq X$, but we also have $V(I) \subseteq Y$, and if we look at the closed points $V(I)_{cl} \subseteq Y_{cl}$, then clearly $X \simeq Y_{cl}$. This shows us that $Y(k) \cong X$ is a homeomorphism.

So this is looking good, Y is a Jacobson sober space, X is T^1 space homeomorphic to closed points of Y, but we have complete equivalence between such spaces, so

$$X = Y_{\rm cl} \qquad \qquad Y = {\rm Sob}\,(X)$$

In particular, $i: X \to Y$ is a quasi-homeomorphism, so

$$\mathbf{Sh}\left(X
ight) \xrightarrow[i^{*}]{i^{-1}} \mathbf{Sh}\left(Y
ight)$$

and these things have the same sheaf theory.

Now we want to see the structure sheaves are actually the same sheaves under this equivalence. On the X side we have $\mathcal{O}_X(U)$. Recall $\mathcal{O}_X(U)$ consists of functions $U \to k$ locally of the form f = g/h on X_h . On the Y side we have \mathcal{O}_Y . These things are somehow similar, but it's not obvious they're the same. We defined \mathcal{O}_Y in terms of stalks and germs, but we also had a theorem that $\mathcal{O}_Y(Y_h) = R[h^{-1}]$. Restriction extends uniquely to a map $R[h^{-1}] \to \mathcal{O}_X(X_h)$. And we claim, that this is in fact injective. The kernel consists of functions $g/h^n \mapsto 0 \in \mathcal{O}_X(X_h)$. This just means $g \mapsto 0 \in \mathcal{O}_X(X_h)$, in other words $X_h \subseteq V(g)$, but $X_h \coloneqq X \setminus V(h)$, which is saying $X \subseteq V(g) \cup V(h)$, in other words gh = 0 everywhere, which means $g = 0 \in R[h^{-1}]$ so this is injective.

Now we compare stalks at the closed points $x \in X_{cl}$. On the X side we have $\mathcal{O}_{X,x} := \varinjlim \mathcal{O}_X(X_g)$ for $x \in X_h$ and on the Y side we have $\mathcal{O}_{Y,x} = R_{\mathfrak{m}(x)}$. So by construction $\mathcal{O}_{Y,x} \twoheadrightarrow \mathcal{O}_{X,x}$, but it's also injective since everything in $\mathcal{O}_{Y,x}$ which maps to $0 \in \mathcal{O}_{X,x}$ must be 0 in some $R[h^{-1}]$, possibly smaller. This is the canonical map $i^{-1}: \mathcal{O}_Y \to \mathcal{O}_X$.

So at this point we have $X = Y_{cl}$ and Y = Sob(X), but we also have

$$\mathcal{O}_X \xleftarrow{i_*}_{i^{-1}} \mathcal{O}_Y$$