LECTURE 38 MATH 256A

LECTURES BY: PROFESSOR MARK HAIMAN NOTES BY: JACKSON VAN DYKE

1. Affine varieties

Recall for $X \subseteq k^n$ a classical variety over $k = \overline{k}$, and $Y = \operatorname{Spec} \mathcal{O}(X)$, we have $X = Y_{cl}$, and $Y = \operatorname{Sob}(X)$. In particular $i : X \to Y$ is a quasi-homeomorphism, and the sheaf theory is the same:

$$\mathcal{O}_X \xleftarrow{i_*}{i^{-1}} \mathcal{O}_Y$$

Corollary 1. $\mathcal{O}_X(X) = \mathcal{O}(X)$

This is because we proved this for schemes, so this follows from the above equivalence.

Corollary 2. Closed $Z \subseteq X$ correspond to radical ideals $I = \sqrt{I} \subset \mathcal{O}(X)$. In particular, Z = V(I). In addition, irreducible subsets correspond to prime ideals.

We have the fact

Fact 1. $\mathcal{I}(k^n) = 0$, which means $\mathcal{O}(k^n) = k [x_1, \cdots, x_n]$.

But even without this, for any field at all we have that $k[x_1, \dots, x_n]$ is Jacobson. But then we also know that every maximal ideal is the kernel of a k-algebra homomorphism to k since k is algebraically closed. Then we see where the x_i go, and $(x_1 - a_1, \dots, x_n - a_n) = \ker ev_a$ for $a \in k^n$. But the intersection of all prime ideals is the 0 ideal, so $\mathcal{I}(k^n) = 0$.

We also know that if we have a reduced f.g. k-algebra, this means $R = k [x_1, \dots, x_n] / I$ for some radical ideal $I = \sqrt{I}$. Therefore R is the coordinate ring $\mathcal{O}(X)$ for some classical X.

2. Morphisms

2.1. Classical morphisms. Now we want to think about morphisms. Let X and X' be classical varieties. Then a morphism $f: X \to X'$ is continuous, and gives us a canonical $f^{\flat}: \mathcal{F}_{X'}^k \to f_*\mathcal{F}_X^k$. But then we want to require that this sends regular functions to regular functions, i.e. $f^{\flat}(\mathcal{O}_{X'}) \subseteq f_*(\mathcal{O}_X)$.

Recall that morphisms of schemes come with extra structure, whereas in the classical case we get this for free.

Still supposing X and X' are affine, this maps $f^{\flat} : \mathcal{O}_{X'}(X') \to \mathcal{O}_X(X)$ but in fact this is a k-algebra homomorphism $f^{\flat} : \mathcal{O}(X') \to \mathcal{O}(X)$, which must correspond

Date: November 30, 2018.

 $\mathbf{2}$

to a k-morphism $g: Y \to Y'$. Then we have the inclusions $X \hookrightarrow Y$ and $X' \hookrightarrow Y'$ and in fact the following diagram commutes:

This is all reversible, which means the correspondence between classical affine varieties and the corresponding scheme is actually an equivalence of categories. In particular we have the canonical bijection

$$\operatorname{Mor}_{\operatorname{cl}}(X, X') \cong \operatorname{Hom}_{k-\operatorname{Alg}}(\mathcal{O}(X'), \mathcal{O}(X)) \cong \operatorname{Mor}_{\operatorname{Sch}/k}(Y, Y')$$

The category on the left is classical affine varieties, the middle is k-algebras.

Definition 1. An algebraic scheme over a field k is a scheme locally of finite type over k.

Then the category on the far right consists of reduced affine algebraic schemes over k.

3. Non-Affine case

Now let X be a generic classical variety. This means X is covered by affine X_{α} . In particular we have

which might not be affine, but then we can cover this with $X_{\alpha,\beta,\gamma}$ affine, and then we have a massive collection of data which describes X. Then we can turn these all into schemes Y_{α} , Y_{β} , and $Y_{\alpha,\beta,\gamma}$. So we get a reduced algebraic scheme over k which is glued together in the same way as X. This is all reversible as well.

The upshot of this, is that now we have a complete equivalence between classical varieties over an algebraically closed field, and reduced algebraic schemes (locally of finite type) over k. Explicitly this is still just given by $X = Y_{cl} = Y(k)$ and Y = Sob(X) and the maps on sheaves are the same as well.

This extends to morphisms as well since we cover X', cover the preimages X, specify a bunch of gluing data, and then move the picture to schemes, and all together the square commutes:

Corollary 3. Let $k = \bar{k}$. A k-morphism of reduced algebraic schemes over k is determined by the map of underlying spaces. In fact, it is determined by the underlying map of k-points.

4. Non-Algebraically closed fields

Example 1 (Counter-example). Let $Y = \operatorname{Spec} \mathbb{C}$ over $k = \mathbb{R}$. Note $k \neq \overline{k}$. There is an \mathbb{R} -algebra homomorphism which is not the identity, $z \mapsto \overline{z}$, which should give us a nontrivial \mathbb{R} -algebra homomorphism $Y \to Y$, but Y only has one point so this is impossible.

In general we can sort of fix it. Let k be generic and Y be an algebraic scheme over k. Then Spec $\bar{k} \times_{\operatorname{Spec} k} Y = Y_{\bar{k}}$ is algebraic over \bar{k} . Y is reduced, and if k is perfect¹ then $Y_{\bar{k}}$ is a reduced algebraic scheme over \bar{k} , i.e. a variety. Now any k-morphism $\varphi: Y \to Y'$ gives us a morphism $\varphi_{\bar{k}}: Y_{\bar{k}} \to Y'_{\bar{k}}$ since $\bar{k} \otimes_k R \leftrightarrow R$ and of course $k \hookrightarrow \bar{k}$. In particular, $\varphi_{\bar{k}}$ determines φ .

Example 2. Let's do this in our toy example. This corresponds to taking $Y_{\overline{k}} =$ Spec $(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$ which corresponds to

$$\mathbb{C}[x] / (x^{2} + 1) = \mathbb{C}[x] / (x - i) (x + i)$$

So $Y_{\overline{k}} = \operatorname{Spec} \mathbb{C} \amalg \operatorname{Spec} \mathbb{C}$. Therefore this has two points, and there is a nontrivial map from $Y_{\overline{k}}$ to itself.

¹Characteristic 0, or if char k = p, closed under taking *p*th roots. For example char k = 0 and finite fields.