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1. General theory of varieties

The general setup is still a closed subvariety X = V (F ) ⊆ kn where F is some
set of polynomials. Let I = (F ) be the ideal generated in our polynomial ring
k [x1, · · · , xn]. Note that every g ∈ I vanishes on X since it is of the form

∑
aifi

for fi ∈ F . Therefore the vanishing locus V (I) = V (F ). Of course we have
that V (I) ⊆ V (F ) trivially since F ⊆ I, so this equality is really just saying the
opposite containment. In addition to this, since the polynomial ring is Noetherian,
every ideal is finitely generated, which means every subvariety of affine space can
be defined by finitely many equations.

Example 1. Different ideals can of course define different varieties. Consider the
ideals I =

(
x2
)
⊆ k [x], J = (x) ⊆ k [x]. But in fact, V (I) = V (J) = {0}.

Now consider

I (X) := {f ∈ k [x1, · · · , xn] | f |X = 0, X ⊆ V (f)}
First note that tautologically X ⊆ V (I (X)) and I ⊆ I (V (I)). However, I (V (I))
is not equal to I in general.

Example 2. Consider I and J as in the example above. Then I (V (J)) = I.

We do however have the following:

Lemma 1. IV I = I and V IV = V .

Proof. We know V I (Y ) supY , which means I (V I (Y )) ⊆ I (Y ). On the other
hand, IV (I (Y )) ⊇ I (Y ). Basically the same holds for V IV . �

In fact for a general S ⊆ kn, V (I (S)) is the smallest closed subvariety containing
S. In a topological sense, X is the closure of S.

Notice that if fm ∈ I, then f ∈ I (V (I)), which means I (V (I)) ⊇
√
I. In fact

this is an equality by Hilbert’s Nullstellensatz1

Another basic observation we can make is that any intersection of varieties in
kn is a variety. For some varieties Xα = V (Iα) for ideals Iα, we can consider the
variety V (

∑
α Iα) which is clearly the intersection of the Xα. In addition,

V (I1) ∪ V (I2) = V (I1I2) = V (I1 ∩ I2)

Date: August 29, 2018.
1 This is often times treated as a fundamental result in algebraic geometry, however the anal-

ogous result in the theory of schemes is almost tautological, so we will wait until then to “prove”
it.
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The first equality here is effectively obvious, but the second equality is a bit more
subtle. It is clear that I1I2 ⊆ I1 ∩ I2 ⊆ I1, I2, but in fact

V (I1I2) ⊇ V (I1 ∩ I2) ⊇ V (I1) ∪ V (I2)

as desired. Also note that kn = V (0) and ∅ = V ((1)).
These observations tell us that the varieties X ⊆ kn form the closed subsets of

a topology on kn, called the Zariski topology.

Example 3. Consider the affine line k1. The whole line is a subvariety, and any
finite set of points is a subvariety given by the zero locus of the polynomial with
those roots. In fact any one equation cuts you down to a finite set of points, and
any additional equation makes you smaller. So the closed subsets are just k1 and
finite subsets. Alternatively, every nonempty open subset is dense, so the affine
line cannot be written as the union of two proper closed subsets, so it is in fact
irreducible.

Lemma 2. Let P be a prime ideal. V (P ) is irreducible.

2. Ring of functions on a variety

Let X ⊆ kn be a variety. Then consider the polynomial ring k [X1, · · · , Xn] and
evaluate at the points of X to map

k [X1, · · · , Xn]→ {f : X → k} = Map (X, k)

We will write the image as O (X), the regular functions on X. We can think of this
as polynomial functions on X.

Example 4. If X is a single point, O (X) = k. In general, for finite X, O (X) '
k × · · · × k.

Since, by definition, k [X1, · · · , Xn] � O (X), we just need to mod out by the
kernel, to find O (X), i.e.

O (X) ∼= k [X1, · · · , Xn] /I (X)

2.1. Maps between varieties. Recall that a morphism of varieties ϕ : X → Y is a
map of sets such that the coordinates yi of ϕ (x) are polynomials in the coordinates
xi of x.

In terms of the rings of regular functions on these varieties, we can regard
each coordinate yi ∈ O (Y ). By definition O (Y ) consists of functions which are
polynomials in these coordinates. Now we can consider the pullback ϕ∗ (yi) =
fi (X1, · · · , Xn) for each i. A priori ϕ∗ is a map from O (Y ) to the collection of all
functions X → k, but in fact ϕ∗ : O (Y )→ O (X) is a k-algebra homomorphism.

O (Y ) Map (X, k)

O (X)

ϕ∗

Conversely, if we have any k-algebra homomorphism, α : O (Y ) → O (X), then
for each i, α (yi) = fi (X1, · · · , Xn) so we have a list of polynomials, which gives us
a map kn → km which sends

x 7→ (f1 (x) , · · · , fn (x))
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so in the end we get a map X → Y which is a morphism of varieties by construction.
In conclusion, we get

Mor (X,Y )
∼−→ Homk-Alg (Y,X)

where we just map ϕ 7→ ϕ∗.

Example 5. If we map a point p ↪→ X, then the evaluation map εp : O (X)→ k is
a k-algebra homomorphism, and conversely, every k-algebra homomorphism from
O (X)→ k will just be evaluation at a point. So O (X) determines X in a concrete
sense since it tells us all the points, polynomials on the points, and the whole Zariski
topology.

We will do some concrete examples next time.
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