LECTURE 5 MATH 256A

LECTURES BY: PROFESSOR MARK HAIMAN,

NOTES BY: JACKSON VAN DYKE

1. Rings of functions

Recall last time we were considering a morphism of varieties $\phi: X \rightarrow Y$ for $Y \subseteq k^{m}$ and $X \subseteq k^{n}$. Then we have the pullback $\phi^{*}: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$, and in fact we have a bijection:

$$
\operatorname{Mor}(X, Y) \xrightarrow{\sim} \operatorname{Hom}_{k-\operatorname{Alg}}(\mathcal{O}(Y), \mathcal{O}(X))
$$

What this is basically saying, is the following:
Proposition 1. Given a k-algebra homomorphism $\alpha: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$, there is a unique morphism $\phi: X \rightarrow Y$ such that $\alpha=\phi^{*}$.

To see why this is true we consider the following motivating examples:
Example 1. Consider $Y=k^{m}$, and $X=\{\mathrm{pt}\}$. Then $\mathcal{O}(Y)=k\left[Y_{1}, \cdots, Y_{m}\right]$, and $\mathcal{O}(X)=k$. Now to be a k-algebra homomorphism $k\left[Y_{1}, \cdots, Y_{m}\right] \rightarrow k$ the base ring must map to itself, so we just need to specify this to be: $y_{i} \mapsto \alpha\left(y_{i}\right)=a_{i}$ and then $Q=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \in k^{m}=Y$. Then the pullback is just the evaluation $\mathrm{ev}_{Q}: f \mapsto f(Q)$.
Example 2. Say $X=\{\mathrm{pt}\}$, and $Y \subseteq k^{m}$ generic, then $\mathcal{O}(Y)=k[Y] / \mathcal{I}(Y)$. Then we have

for $Q \in Y$.
Now if we want X to also be generic, then say we're given $\alpha: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$, and we want such a ϕ, then we take $P \in X$, which of course has an evaluation map ϵ_{P}. Then we can compose with α, to get

and we can just define $\phi(P)=Q$, such that $\epsilon_{Q}=\epsilon_{P} \circ \alpha$. Then for $f \in \mathcal{O}(Y)$,

$$
\left(\phi^{*} f\right)(P)=f(\phi(P))=f(Q)=\epsilon_{Q}(f)={ }^{1} \epsilon_{Q}(\alpha(f))=\alpha(f)(P)
$$

Date: August 31, 2018.
${ }^{1}$ From the diagram

Figure 1. If we add an extra dimension to our ambient space, we can rig it such that the X_{1} and X_{2} are disjoint in this space.

So we have indeed constructed a unique map ϕ such that $\phi^{*}=\alpha$.

1.1. Examples.

Example 3. If $X=k^{n}$, then $\mathcal{O}(X)=k\left[X_{1}, \cdots, X_{n}\right]$. If $X=\{\mathrm{pt}\}$, then $\mathcal{O}(X)=$ k.

Example 4. If $X=\emptyset, \mathcal{O}(X)=0$. Note that the zero ring is technically a k algebra. ${ }^{2}$

If we take any variety Y, there is of course a morphism $\phi: \emptyset \rightarrow Y$, and of course there is a unique morphism $\mathcal{O}(Y) \rightarrow 0$ so this is consistent. When is there a map $Y \rightarrow \emptyset$? Never, unless Y is empty. If such a map did exist, then we would expect a map $0 \rightarrow \mathcal{O}(Y)$, but there is no copy of k in 0 , and there is one in $\mathcal{O}(Y)$, so for nonempty Y there is also no such k-algebra homomorphism, so this is also consistent.
Example 5. Say $Z \subseteq Y \subseteq k^{m}$. Then $\mathcal{O}(Z) \supseteq \mathcal{I}(Y)$. Then $\mathcal{O}(Y) \rightarrow \mathcal{O}(Z)$, since $\mathcal{O}(Y)=k[Y] / \mathcal{I}(Y)$, and similarly for X. The kernel is $\mathcal{I}(Z)$ in $\mathcal{O}(Y)$, so $\mathcal{O}(Z)=\mathcal{O}(Y) / \mathcal{I}(Z)$.

Example 6. If we have two closed varieties, we saw the union is as well, but now let's say we have two varieties X_{1} and X_{2}, then we can consider $X_{1} \amalg X_{2}$. In coordinate land, we want to embed these as disjoint varieties $X_{1} \subseteq k^{n} X_{2} \subseteq k^{n}$, but we don't want to do this, in case they intersect. So let's say they do embed in k^{n} and X_{1} has some equations I_{1}, and X_{2} has some equations I_{2}. Then we want to embed their disjoint union in k^{n+1}. The picture is as in fig. 1. So the new equations are $z(z-1), z I_{2}$, and $(z-1) I_{1}$, and take ideal I generate by all of these.
Exercise 1. Show that $\mathcal{O}\left(X_{1} \amalg X_{2}\right) \cong \mathcal{O}\left(X_{1}\right) \times \mathcal{O}\left(X_{2}\right)$.
Example 7. What is $X \times Y$ in this case? Well if $X=V(I) \subseteq k^{n}$, and $Y=V(J) \subseteq$ k^{m}, then $V(I, J) \subseteq k^{n+m}$ is, at least set theoretically, $X \times Y$. Algebraically, if we take

$$
k\left[X_{1}, \cdots, X_{n}\right] \otimes_{k} k\left[Y_{1}, \cdots, Y_{n}\right]=k\left[X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right]
$$

Now $\mathcal{O}(X)$ is a quotient of this ring by I, and $\mathcal{O}(Y)$ is a quotient of this ring by J, and if tensor these, since tensor products are right-exact, we have

$$
k\left[X_{1}, \cdots, X_{n}\right] / I \otimes_{k} k\left[Y_{1}, \cdots, Y_{n}\right] / J=k[X] \otimes k[Y] /(I \otimes(1)+(1) \otimes J)
$$

[^0]

Figure 2. (Right) The case of the elliptic curve considered in example 9 for $c \neq 0,1$. (Left) The case of the elliptic curve form fig. 2 when $c=0$.

Example 8. Consider an affine plane curve, forgetting about projective space. So let's take something of the form $V(y-f(x))$. This is just a graph of a function. Because this isn't the most general version of such a curve, we can just project to the x-axis. Clearly this projection is a morphism $k^{2} \rightarrow k^{1}$. Of course we can also apply this to any subvariety. In the language from before, $Y=V(y)$ is the x-axis. Then this projection will correspond to a ring homomorphism

$$
k[x] \rightarrow k[x, y] /(y-f(x))
$$

where $f(x)$ goes to itself thought of as a function of both x and y, lying in this quotient ring.

$$
\begin{aligned}
& k[x] \longrightarrow k[x, y] /(y-f(x)) \\
& x \longmapsto x \\
& k[x] \quad k[x, y] /(y-f(x)) \\
& x \longleftrightarrow x \\
& f(x) \longleftrightarrow y
\end{aligned}
$$

In general, for any $\phi: X \rightarrow Y$, we have the graph $\Gamma(\phi) \subseteq X \times Y$ where we view $X \times Y$ as a variety as in example 7. Then the projection of this graph is an isomorphism.

Example 9. Consider the elliptic curve $y^{2}=x(x+1)(x-c)$, this has a graph as in the left figure of fig. 2. We will try to parametrize such a curve. Consider either $c=0$ or $c=1$, which looks like the right figure in fig. 2. Take $y^{2}=x^{2}(x+1)$, i.e. set $c=0$ Then we can consider this on the affine line $k^{1}=k[t]$. Now to parametrize this curve we take $x=t^{2}-1$ and $y=t\left(t^{2}-1\right)$. Now to check, we calculate:

$$
x^{2}(x+1)=\left(t^{1}-1\right)^{2} t^{2}=y^{2}
$$

As expected, we have two values of t such that we hit the origin at those t values. This is $t= \pm 1$. In terms of algebra homomorphisms, we have:

$$
\begin{aligned}
& k[x, y] /\left(y^{2}-x^{2}(x+1)\right) \longrightarrow k[t] \\
& x \longmapsto t^{2}-1 \\
& y \longmapsto t\left(t^{2}-1\right)
\end{aligned}
$$

The way to find this parameterization is as follows. The equation is of degree 3 , which means a general line meets it at three points. However, if the line passes through the origin, two roots are already determined. So a general line through the origin meets the curve at one unique additional point. So consider the slope of such a line, and then we can predict that this yields the above parameterization. If we simultaneously set

$$
y^{2}=x^{2}(x+1) \quad y=t x
$$

we get $t^{2} x^{2}=x^{2}(x+1)$, or $x^{2}\left(x+1-t^{2}\right)=0$.

[^0]: ${ }^{2}$ Since a k-algebra is just a ring R along with a ring homomorphism $k \rightarrow R$.

