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1. TENSOR PRODUCT OF SHEAVES

Recall we defined the tensor products on sheaves to be the sheafification of the
natural presheaf tensor product:

(1) MON =sh (M N) .
This has the universal property:

M x N A0

3 7

(2) | 3

MRAN
just like for ordinary modules. The stalks are just M, ®4, N, as we would expect.
1.1. Affine schemes. Let X = SpecR, A= Ox, M =M, and N = N. Then we
have that
(3) Mo, N=(MerN)" .

The easiest way to see this is by the universal property of the - operation. There is
certainly a map

(4) M®RN—>F<X,M®()XN)

which sends m ® n = m ® n. Then we just want to check this is the identity on
stalks. The stalks are

(5) (M ®rN) @ Ry = My, @, Ny
so this is an isomorphism. So this is a good fact to know:
(6) (M®RN)N=M®(9XN.

Warning 1. So we have seen that for affines, taking global sections commutes with
tensor products. Note that this is not the case for non-affine X. Le. (for M, N
qco) the following is NOT generally true:

(7) F(XaM ®N):F(X3M) ®F(X,Ox)F(X7N) .
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Counterexample 1. There is always a map from the RHS to the LHS above,
but it’s not always an isomorphism. Let X = P and M = N = O(1). Then
M@ N = O(2). There are of course quasi-coherent, however we can calculate
that:

(8) I'(Pg, O (d) = k[zo, -, 2nlg)
(9) F(M)=k~{$0,--~,l‘n}
(10) T(MeN)=k-{z§,zoz1, -} .

2. EXTENSION OF SCALARS

Let X and Y be ringed spaces. A map ¢: X — Y is specified by the data
(cp, o7, gob). For A/ an Oy-module, we can take ¢ ' N which is a ¢~ 'Oy module.
However the map ¢ 'Oy — Ox doesn’t make this an Oy module unless we tensor
it:

(11) PN =0x ®y-10, ¢ 'N .

We should think of this as being like the usual extension of scalars for modules.
Let M be a sheaf of Ox modules. Then we want to consider

(12) Homo, (¢*N, M) = Hom,-10, (¢~ 'N, M)

where M’ is just M viewed as a p~!Oy-module. Since p~! and ¢, are adjoint,
we have

(13) Hom,-10, (¢~ 'N, M) = Homo, (N, p.M) .

This tells us that ¢* is left adjoint to (. as functors between Ox-modules and
Oy-modules.!

Consider the scheme morphism ¢: X = Spec A — Y = Spec B corresponding to
a ring homomorphism «: B — A. Then for N a B-module,

(14) ¢*N = (Ao N)~ .
A map

(15) (AR N)~ — ¢*N
corresponds to a map of A-modules

(16) Awp N = (9'F) (X)

which sends a ® n — a®@n. A stalk of (A ®p N)™ looks like Ap ®p, Ng where Q
is the preimage of P under a. A stalk on the other side is Ap ®p, Ng so this is
an isomorphism.

There are lots of other ways to see this. One is that we could use the universal
property on the right to get a map in the other direction. Another way to do this
would be to take a presentation of IV

(17) BY B 4 N 0.
This gives a presentation:
(18) o 5o 5 N0

1@*1 was left adjoint to ¢+« when dealing with sheaves of sets or abelian groups rather than

modules.
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and then ¢* gives us
o) o) — p*N -0
(19)
AD — AD 5 A®p N =0
and we just compare these. n
2.1. Generic schemes. This was just for affine schemes but for any morphisms

of schemes X — Y, we can cover Y with affines, take the preimage of these, then
cover these preimages, and then just patch everything together. So for all schemes

(20) #* (QCoh (Y)) C QCoh (X) .

3. BACK 1O Proj
Let X = Proj R, and M be a graded R-module. Then M is an Ox module. On
Xy = Spec (Ry),
(21) M| =My -
f

Now we can shift degrees

(22) (M [d), = Mn+a
to get
(23) Ox (d) = R[]~ .

Now suppose that the degree of f divides d, i.e. for some k deg f - k = d. Then
(24) Ox, (d) = (R ld])y = (Rp)y

thought of as an (Ry),-module. But now we actually have an isomorphism of
modules:

(25) (Rf)o — (Rf)d

given by multiplication by f*, and f~* respectively. Therefore we have
d) ~

(26) OS(J)? = OX|Xf :

From here on we will assume? that the collection of X;’s such that deg f = 1 form
a cover, or said differently:

(27) V(Ri) =V (Ry)

(or V(R;) =0 in X = Proj R). This will imply that Ox (d) is:

(
) locally free of rank 1, or
) a line bundle?, or

)

an invertible sheaf.

(1
(2
(3

2 This is justified by this thinning argument from a few lectures ago.
3This terminology will be justified later.



4 LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

4. INVERTIBLE SHEAVES

Let X be a ringed space, and let £ be an invertible sheaf, i.e. we can cover X
with opens U such that

(28) L), ~0x (U) .

The nice thing about Ox is that it has a distinguished section: 1. Under this
isomorphism, this will go to oy € L (U). Now we can consider £ (U N'V). Then we
have two sections o;; and oy which are each local generating sections. I.e. there is
some gy such that oy = gyyoy and some gyy such that and oy = gyyoy, i.e.
guvgvy = 1, s0 guvgvy € O(UNV)™ and gyy = g(}‘l/. Then there is some sort
of compatibility which says that on U NV N'W we have

(29) oW = gvwov = gywguvou = Juwou
which means gyw = gvwguy. Given this compatible data, this determines £
completely.

We could also have alternative sections o}, = hyyoy, where hyy € O (U)™. What
is really happening here is something cohomological. The idea is that the os are
the 0-cycles, the choices of these gs are the 1-cycles, and the 2-cycles are the things
on triple intersections:

(30) VAR AR /A
Then the sheaf cohomology
(31) H' (X,0%) = Pic(X) ,

which is called the Picard group of X, consists of the invertible sheaves on X. This
is a group with respect to tensor products.
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