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1. Tensor product of sheaves

Recall we defined the tensor products on sheaves to be the sheafification of the
natural presheaf tensor product:

(1) M⊗N = sh (M⊗pr
A N ) .

This has the universal property:

(2)

M×N L

M⊗A N

A−bil.

−⊗−
∃!

just like for ordinary modules. The stalks are just Mp⊗Ap Np as we would expect.

1.1. Affine schemes. Let X = SpecR, A = OX , M = M̃ , and N = Ñ . Then we
have that

(3) M⊗OX
N = (M ⊗R N)

∼
.

The easiest way to see this is by the universal property of the ·̃ operation. There is
certainly a map

(4) M ⊗R N → Γ
(
X, M̃ ⊗OX

Ñ
)

which sends m ⊗ n → m ⊗ n. Then we just want to check this is the identity on
stalks. The stalks are

(5) (M ⊗R N)⊗r Rp = Mp ⊗Rp Np

so this is an isomorphism. So this is a good fact to know:

(6) (M ⊗R N)
∼
= M̃ ⊗OX

Ñ .

Warning 1. So we have seen that for affines, taking global sections commutes with
tensor products. Note that this is not the case for non-affine X. I.e. (for M, N
qco) the following is NOT generally true:

(7) Γ (X,M⊗N ) = Γ (X,M)⊗Γ(X,OX) Γ (X,N ) .
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Counterexample 1. There is always a map from the RHS to the LHS above,
but it’s not always an isomorphism. Let X = Pn

k and M = N = O (1). Then
M ⊗ N = O (2). There are of course quasi-coherent, however we can calculate
that:

Γ (Pn
k ,O (d)) = k [x0, · · · , xn](d)(8)

Γ (M) = k · {x0, · · · , xn}(9)

Γ (M⊗N ) = k ·
{
x2
0, x0x1, · · ·

}
.(10)

2. Extension of scalars

Let X and Y be ringed spaces. A map ϕ : X → Y is specified by the data(
ϕ,ϕ#, ϕ[

)
. For N an OY -module, we can take ϕ−1N which is a ϕ−1OY module.

However the map ϕ−1OY → OX doesn’t make this an OX module unless we tensor
it:

(11) ϕ∗N = OX ⊗ϕ−1OY
ϕ−1N .

We should think of this as being like the usual extension of scalars for modules.
Let M be a sheaf of OX modules. Then we want to consider

(12) HomOX
(ϕ∗N ,M) = Homϕ−1OY

(
ϕ−1N ,M′)

where M′ is just M viewed as a ϕ−1OY -module. Since ϕ−1 and ϕ∗ are adjoint,
we have

(13) Homϕ−1OY

(
ϕ−1N ,M′) = HomOY

(N , ϕ∗M) .

This tells us that ϕ∗ is left adjoint to ϕ∗ as functors between OX -modules and
OY -modules.1

Consider the scheme morphism ϕ : X = SpecA → Y = SpecB corresponding to
a ring homomorphism α : B → A. Then for N a B-module,

(14) ϕ∗Ñ = (A⊗B N)
∼

.

A map

(15) (A⊗B N)
∼ → ϕ∗Ñ

corresponds to a map of A-modules

(16) A⊗B N →
(
ϕ∗Ñ

)
(X)

which sends a⊗ n 7→ a⊗ n. A stalk of (A⊗B N)
∼
looks like AP ⊗BQ

NQ where Q
is the preimage of P under α. A stalk on the other side is AP ⊗BQ

NQ so this is
an isomorphism.

There are lots of other ways to see this. One is that we could use the universal
property on the right to get a map in the other direction. Another way to do this
would be to take a presentation of N

(17) B(I) → B(I) → N → 0 .

This gives a presentation:

(18) O(I)
Y → O(I)

Y → Ñ → 0

1ϕ−1 was left adjoint to ϕ∗ when dealing with sheaves of sets or abelian groups rather than
modules.
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and then ϕ∗ gives us

(19)
O(I)

X O(I)
Y ϕ∗Ñ → 0

A(I) A(I) A⊗B N → 0

and we just compare these. n

2.1. Generic schemes. This was just for affine schemes but for any morphisms
of schemes X → Y , we can cover Y with affines, take the preimage of these, then
cover these preimages, and then just patch everything together. So for all schemes

(20) ϕ∗ (QCoh (Y )) ⊆ QCoh (X) .

3. Back to Proj

Let X = ProjR, and M be a graded R-module. Then M̃ is an OX module. On
Xf = Spec (Rf )0

(21) M̃
∣∣∣
Xf

= (Mf )
∼
0 .

Now we can shift degrees

(22) (M [d])n = Mn+d

to get

(23) OX (d) = R [d]
∼

.

Now suppose that the degree of f divides d, i.e. for some k deg f · k = d. Then

(24) OXf
(d) = (Rf [d])

∼
0 = (Rf )

∼
d

thought of as an (Rf )d-module. But now we actually have an isomorphism of
modules:

(25) (Rf )0 → (Rf )d

given by multiplication by fk, and f−k respectively. Therefore we have

(26) O(d)
Xf

∼= OX |Xf
.

From here on we will assume2 that the collection of Xf ’s such that deg f = 1 form
a cover, or said differently:

(27) V (R1) = V (R+)

(or V (R1) = ∅ in X = ProjR). This will imply that OX (d) is:

(1) locally free of rank 1, or
(2) a line bundle3, or
(3) an invertible sheaf.

2 This is justified by this thinning argument from a few lectures ago.
3This terminology will be justified later.
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4. Invertible sheaves

Let X be a ringed space, and let L be an invertible sheaf, i.e. we can cover X
with opens U such that

(28) L|U ' OX (U) .

The nice thing about OX is that it has a distinguished section: 1. Under this
isomorphism, this will go to σU ∈ L (U). Now we can consider L (U ∩ V ). Then we
have two sections σU and σV which are each local generating sections. I.e. there is
some gUV such that σU = gUV σV and some gV U such that and σV = gV UσU , i.e.
gUV gV U = 1, so gUV gV U ∈ O (U ∩ V )

×
and gV U = g−1

UV . Then there is some sort
of compatibility which says that on U ∩ V ∩W we have

(29) σW = gVWσV = gVW gUV σU = gUWσU

which means gUW = gVW gUV . Given this compatible data, this determines L
completely.

We could also have alternative sections σ′
U = hUσU , where hU ∈ O (U)

×
. What

is really happening here is something cohomological. The idea is that the σs are
the 0-cycles, the choices of these gs are the 1-cycles, and the 2-cycles are the things
on triple intersections:

(30) Z1 → Z1 → Z2 .

Then the sheaf cohomology

(31) H1
(
X,O×

X

)
= Pic (X) ,

which is called the Picard group of X, consists of the invertible sheaves on X. This
is a group with respect to tensor products.
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