LECTURE 10

256B

LECTURE: PROFESSOR MARK HAIMAN
NOTES: JACKSON VAN DYKE

1. Tensor product of sheaves

Recall we defined the tensor products on sheaves to be the sheafification of the natural presheaf tensor product:

$$
\begin{equation*}
\mathcal{M} \otimes \mathcal{N}=\operatorname{sh}\left(\mathcal{M} \otimes_{\mathcal{A}}^{p r} \mathcal{N}\right) \tag{1}
\end{equation*}
$$

This has the universal property:

just like for ordinary modules. The stalks are just $\mathcal{M}_{p} \otimes_{\mathcal{A}_{p}} \mathcal{N}_{p}$ as we would expect.
1.1. Affine schemes. Let $X=\operatorname{Spec} R, \mathcal{A}=\mathcal{O}_{X}, \mathcal{M}=\tilde{M}$, and $\mathcal{N}=\tilde{N}$. Then we have that

$$
\begin{equation*}
\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{N}=\left(M \otimes_{R} N\right)^{\sim} \tag{3}
\end{equation*}
$$

The easiest way to see this is by the universal property of the $\tilde{\sim}$ operation. There is certainly a map

$$
\begin{equation*}
M \otimes_{R} N \rightarrow \Gamma\left(X, \tilde{M} \otimes_{\mathcal{O}_{X}} \tilde{N}\right) \tag{4}
\end{equation*}
$$

which sends $m \otimes n \rightarrow m \otimes n$. Then we just want to check this is the identity on stalks. The stalks are

$$
\begin{equation*}
\left(M \otimes_{R} N\right) \otimes_{r} R_{p}=M_{p} \otimes_{R_{p}} N_{p} \tag{5}
\end{equation*}
$$

so this is an isomorphism. So this is a good fact to know:

$$
\begin{equation*}
\left(M \otimes_{R} N\right)^{\sim}=\tilde{M} \otimes_{\mathcal{O}_{X}} \tilde{N} \tag{6}
\end{equation*}
$$

Warning 1. So we have seen that for affines, taking global sections commutes with tensor products. Note that this is not the case for non-affine X. I.e. (for \mathcal{M}, \mathcal{N} qco) the following is NOT generally true:

$$
\begin{equation*}
\Gamma(X, \mathcal{M} \otimes \mathcal{N})=\Gamma(X, \mathcal{M}) \otimes_{\Gamma\left(X, \mathcal{O}_{X}\right)} \Gamma(X, \mathcal{N}) \tag{7}
\end{equation*}
$$

Date: February 13, 2019.

Counterexample 1. There is always a map from the RHS to the LHS above, but it's not always an isomorphism. Let $X=\mathbb{P}_{k}^{n}$ and $\mathcal{M}=\mathcal{N}=\mathcal{O}$ (1). Then $\mathcal{M} \otimes \mathcal{N}=\mathcal{O}(2)$. There are of course quasi-coherent, however we can calculate that:

$$
\begin{align*}
\Gamma\left(\mathbb{P}_{k}^{n}, \mathcal{O}(d)\right) & =k\left[x_{0}, \cdots, x_{n}\right]_{(d)} \tag{8}\\
\Gamma(\mathcal{M}) & =k \cdot\left\{x_{0}, \cdots, x_{n}\right\} \tag{9}\\
\Gamma(\mathcal{M} \otimes \mathcal{N}) & =k \cdot\left\{x_{0}^{2}, x_{0} x_{1}, \cdots\right\} \tag{10}
\end{align*}
$$

2. Extension of scalars

Let X and Y be ringed spaces. A map $\varphi: X \rightarrow Y$ is specified by the data $\left(\varphi, \varphi^{\#}, \varphi^{b}\right)$. For \mathcal{N} an \mathcal{O}_{Y}-module, we can take $\varphi^{-1} \mathcal{N}$ which is a $\varphi^{-1} \mathcal{O}_{Y}$ module. However the map $\varphi^{-1} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$ doesn't make this an \mathcal{O}_{X} module unless we tensor it:

$$
\begin{equation*}
\varphi^{*} \mathcal{N}=\mathcal{O}_{X} \otimes_{\varphi^{-1}} \mathcal{O}_{Y} \varphi^{-1} \mathcal{N} \tag{11}
\end{equation*}
$$

We should think of this as being like the usual extension of scalars for modules.
Let \mathcal{M} be a sheaf of \mathcal{O}_{X} modules. Then we want to consider

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{O}_{X}}\left(\varphi^{*} \mathcal{N}, \mathcal{M}\right)=\operatorname{Hom}_{\varphi^{-1} \mathcal{O}_{Y}}\left(\varphi^{-1} \mathcal{N}, \mathcal{M}^{\prime}\right) \tag{12}
\end{equation*}
$$

where \mathcal{M}^{\prime} is just \mathcal{M} viewed as a $\varphi^{-1} \mathcal{O}_{Y}$-module. Since φ^{-1} and φ_{*} are adjoint, we have

$$
\begin{equation*}
\operatorname{Hom}_{\varphi^{-1} \mathcal{O}_{Y}}\left(\varphi^{-1} \mathcal{N}, \mathcal{M}^{\prime}\right)=\operatorname{Hom}_{\mathcal{O}_{Y}}\left(\mathcal{N}, \varphi_{*} \mathcal{M}\right) \tag{13}
\end{equation*}
$$

This tells us that φ^{*} is left adjoint to φ_{*} as functors between \mathcal{O}_{X}-modules and \mathcal{O}_{Y}-modules. ${ }^{1}$

Consider the scheme morphism $\varphi: X=\operatorname{Spec} A \rightarrow Y=\operatorname{Spec} B$ corresponding to a ring homomorphism $\alpha: B \rightarrow A$. Then for N a B-module,

$$
\begin{equation*}
\varphi^{*} \tilde{N}=\left(A \otimes_{B} N\right)^{\sim} \tag{14}
\end{equation*}
$$

A map

$$
\begin{equation*}
\left(A \otimes_{B} N\right)^{\sim} \rightarrow \varphi^{*} \tilde{N} \tag{15}
\end{equation*}
$$

corresponds to a map of A-modules

$$
\begin{equation*}
A \otimes_{B} N \rightarrow\left(\varphi^{*} \tilde{N}\right)(X) \tag{16}
\end{equation*}
$$

which sends $a \otimes n \mapsto a \otimes n$. A stalk of $\left(A \otimes_{B} N\right)^{\sim}$ looks like $A_{P} \otimes_{B_{Q}} N_{Q}$ where Q is the preimage of P under α. A stalk on the other side is $A_{P} \otimes_{B_{Q}} N_{Q}$ so this is an isomorphism.

There are lots of other ways to see this. One is that we could use the universal property on the right to get a map in the other direction. Another way to do this would be to take a presentation of N

$$
\begin{equation*}
B^{(I)} \rightarrow B^{(I)} \rightarrow N \rightarrow 0 \tag{17}
\end{equation*}
$$

This gives a presentation:

$$
\begin{equation*}
\mathcal{O}_{Y}^{(I)} \rightarrow \mathcal{O}_{Y}^{(I)} \rightarrow \tilde{N} \rightarrow 0 \tag{18}
\end{equation*}
$$

[^0]and then φ^{*} gives us
\[

$$
\begin{align*}
& \mathcal{O}_{X}^{(I)} \longrightarrow \mathcal{O}_{Y}^{(I)} \longrightarrow \varphi^{*} \tilde{N} \rightarrow 0 \tag{19}\\
& A^{(I)} \longrightarrow A^{(I)} \longrightarrow A \otimes_{B} N \rightarrow 0
\end{align*}
$$
\]

and we just compare these. n
2.1. Generic schemes. This was just for affine schemes but for any morphisms of schemes $X \rightarrow Y$, we can cover Y with affines, take the preimage of these, then cover these preimages, and then just patch everything together. So for all schemes

$$
\begin{equation*}
\varphi^{*}(\mathbf{Q C o h}(Y)) \subseteq \mathbf{Q} \operatorname{Coh}(X) \tag{20}
\end{equation*}
$$

3. Back to Proj

Let $X=\operatorname{Proj} R$, and M be a graded R-module. Then \tilde{M} is an \mathcal{O}_{X} module. On $X_{f}=\operatorname{Spec}\left(R_{f}\right)_{0}$

$$
\begin{equation*}
\left.\tilde{M}\right|_{X_{f}}=\left(M_{f}\right)_{0}^{\sim} \tag{21}
\end{equation*}
$$

Now we can shift degrees

$$
\begin{equation*}
(M[d])_{n}=M_{n+d} \tag{22}
\end{equation*}
$$

to get

$$
\begin{equation*}
\mathcal{O}_{X}(d)=R[d]^{\sim} \tag{23}
\end{equation*}
$$

Now suppose that the degree of f divides d, i.e. for some $k \operatorname{deg} f \cdot k=d$. Then

$$
\begin{equation*}
\mathcal{O}_{X_{f}}(d)=\left(R_{f}[d]\right)_{0}^{\sim}=\left(R_{f}\right)_{d}^{\sim} \tag{24}
\end{equation*}
$$

thought of as an $\left(R_{f}\right)_{d}$-module. But now we actually have an isomorphism of modules:

$$
\begin{equation*}
\left(R_{f}\right)_{0} \rightarrow\left(R_{f}\right)_{d} \tag{25}
\end{equation*}
$$

given by multiplication by f^{k}, and f^{-k} respectively. Therefore we have

$$
\begin{equation*}
\left.\mathcal{O}_{X_{f}}^{(d)} \cong \mathcal{O}_{X}\right|_{X_{f}} \tag{26}
\end{equation*}
$$

From here on we will assume ${ }^{2}$ that the collection of X_{f} 's such that $\operatorname{deg} f=1$ form a cover, or said differently:

$$
\begin{equation*}
V\left(R_{1}\right)=V\left(R_{+}\right) \tag{27}
\end{equation*}
$$

(or $V\left(R_{1}\right)=\emptyset$ in $X=\operatorname{Proj} R$). This will imply that $\mathcal{O}_{X}(d)$ is:
(1) locally free of rank 1 , or
(2) a line bundle ${ }^{3}$, or
(3) an invertible sheaf.

[^1]
4. InVErtible sheaves

Let X be a ringed space, and let \mathcal{L} be an invertible sheaf, i.e. we can cover X with opens U such that

$$
\begin{equation*}
\left.\mathcal{L}\right|_{U} \simeq \mathcal{O}_{X}(U) \tag{28}
\end{equation*}
$$

The nice thing about \mathcal{O}_{X} is that it has a distinguished section: 1. Under this isomorphism, this will go to $\sigma_{U} \in \mathcal{L}(U)$. Now we can consider $\mathcal{L}(U \cap V)$. Then we have two sections σ_{U} and σ_{V} which are each local generating sections. I.e. there is some $g_{U V}$ such that $\sigma_{U}=g_{U V} \sigma_{V}$ and some $g_{V U}$ such that and $\sigma_{V}=g_{V U} \sigma_{U}$, i.e. $g_{U V} g_{V U}=1$, so $g_{U V} g_{V U} \in \mathcal{O}(U \cap V)^{\times}$and $g_{V U}=g_{U V}^{-1}$. Then there is some sort of compatibility which says that on $U \cap V \cap W$ we have

$$
\begin{equation*}
\sigma_{W}=g_{V W} \sigma_{V}=g_{V W} g_{U V} \sigma_{U}=g_{U W} \sigma_{U} \tag{29}
\end{equation*}
$$

which means $g_{U W}=g_{V W} g_{U V}$. Given this compatible data, this determines \mathcal{L} completely.

We could also have alternative sections $\sigma_{U}^{\prime}=h_{U} \sigma_{U}$, where $h_{U} \in \mathcal{O}(U)^{\times}$. What is really happening here is something cohomological. The idea is that the σ s are the 0 -cycles, the choices of these $g s$ are the 1 -cycles, and the 2 -cycles are the things on triple intersections:

$$
\begin{equation*}
Z^{1} \rightarrow Z^{1} \rightarrow Z^{2} \tag{30}
\end{equation*}
$$

Then the sheaf cohomology

$$
\begin{equation*}
H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)=\operatorname{Pic}(X) \tag{31}
\end{equation*}
$$

which is called the Picard group of X, consists of the invertible sheaves on X. This is a group with respect to tensor products.

[^0]: ${ }^{1} \varphi^{-1}$ was left adjoint to φ_{*} when dealing with sheaves of sets or abelian groups rather than modules.

[^1]: 2 This is justified by this thinning argument from a few lectures ago.
 ${ }^{3}$ This terminology will be justified later.

