LECTURE 10 256B

LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

1. Tensor product of sheaves

Recall we defined the tensor products on sheaves to be the sheafification of the natural presheaf tensor product:

(1)
$$\mathcal{M} \otimes \mathcal{N} = \operatorname{sh} \left(\mathcal{M} \otimes_{\mathcal{A}}^{pr} \mathcal{N} \right)$$

This has the universal property:

just like for ordinary modules. The stalks are just $\mathcal{M}_p \otimes_{\mathcal{A}_p} \mathcal{N}_p$ as we would expect.

1.1. Affine schemes. Let $X = \operatorname{Spec} R$, $\mathcal{A} = \mathcal{O}_X$, $\mathcal{M} = \tilde{M}$, and $\mathcal{N} = \tilde{N}$. Then we have that

(3)
$$\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{N} = (\mathcal{M} \otimes_R \mathcal{N})^{\sim}$$

The easiest way to see this is by the universal property of the $\tilde{\cdot}$ operation. There is certainly a map

(4)
$$M \otimes_R N \to \Gamma\left(X, \tilde{M} \otimes_{\mathcal{O}_X} \tilde{N}\right)$$

which sends $m \otimes n \to m \otimes n$. Then we just want to check this is the identity on stalks. The stalks are

(5)
$$(M \otimes_R N) \otimes_r R_p = M_p \otimes_{R_p} N_p$$

so this is an isomorphism. So this is a good fact to know:

(6)
$$(M \otimes_R N)^{\sim} = \tilde{M} \otimes_{\mathcal{O}_X} \tilde{N}$$

Warning 1. So we have seen that for affines, taking global sections commutes with tensor products. Note that this is not the case for non-affine X. I.e. (for \mathcal{M}, \mathcal{N} qco) the following is NOT generally true:

(7)
$$\Gamma(X, \mathcal{M} \otimes \mathcal{N}) = \Gamma(X, \mathcal{M}) \otimes_{\Gamma(X, \mathcal{O}_X)} \Gamma(X, \mathcal{N}) .$$

Date: February 13, 2019.

Counterexample 1. There is always a map from the RHS to the LHS above, but it's not always an isomorphism. Let $X = \mathbb{P}_k^n$ and $\mathcal{M} = \mathcal{N} = \mathcal{O}(1)$. Then $\mathcal{M} \otimes \mathcal{N} = \mathcal{O}(2)$. There are of course quasi-coherent, however we can calculate that:

(8)
$$\Gamma\left(\mathbb{P}_{k}^{n},\mathcal{O}\left(d\right)\right)=k\left[x_{0},\cdots,x_{n}\right]_{\left(d\right)}$$

(9)
$$\Gamma(\mathcal{M}) = k \cdot \{x_0, \cdots, x_n\}$$

(10)
$$\Gamma\left(\mathcal{M}\otimes\mathcal{N}\right) = k \cdot \left\{x_0^2, x_0x_1, \cdots\right\} .$$

2. Extension of scalars

Let X and Y be ringed spaces. A map $\varphi \colon X \to Y$ is specified by the data $(\varphi, \varphi^{\#}, \varphi^{\flat})$. For \mathcal{N} an \mathcal{O}_Y -module, we can take $\varphi^{-1}\mathcal{N}$ which is a $\varphi^{-1}\mathcal{O}_Y$ module. However the map $\varphi^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ doesn't make this an \mathcal{O}_X module unless we tensor it:

(11)
$$\varphi^* \mathcal{N} = \mathcal{O}_X \otimes_{\varphi^{-1} \mathcal{O}_Y} \varphi^{-1} \mathcal{N}$$

We should think of this as being like the usual extension of scalars for modules.

Let \mathcal{M} be a sheaf of \mathcal{O}_X modules. Then we want to consider

(12)
$$\operatorname{Hom}_{\mathcal{O}_X}(\varphi^*\mathcal{N},\mathcal{M}) = \operatorname{Hom}_{\varphi^{-1}\mathcal{O}_Y}(\varphi^{-1}\mathcal{N},\mathcal{M}')$$

where \mathcal{M}' is just \mathcal{M} viewed as a $\varphi^{-1}\mathcal{O}_Y$ -module. Since φ^{-1} and φ_* are adjoint, we have

(13)
$$\operatorname{Hom}_{\varphi^{-1}\mathcal{O}_Y}\left(\varphi^{-1}\mathcal{N},\mathcal{M}'\right) = \operatorname{Hom}_{\mathcal{O}_Y}\left(\mathcal{N},\varphi_*\mathcal{M}\right)$$

This tells us that φ^* is left adjoint to φ_* as functors between \mathcal{O}_X -modules and \mathcal{O}_Y -modules.¹

Consider the scheme morphism $\varphi \colon X = \operatorname{Spec} A \to Y = \operatorname{Spec} B$ corresponding to a ring homomorphism $\alpha \colon B \to A$. Then for N a B-module,

(14)
$$\varphi^* \tilde{N} = (A \otimes_B N)^{\sim}$$

A map

(15)
$$(A \otimes_B N)^{\sim} \to \varphi^* \tilde{N}$$

corresponds to a map of A-modules

(16)
$$A \otimes_B N \to \left(\varphi^* \tilde{N}\right)(X)$$

which sends $a \otimes n \mapsto a \otimes n$. A stalk of $(A \otimes_B N)^{\sim}$ looks like $A_P \otimes_{B_Q} N_Q$ where Q is the preimage of P under α . A stalk on the other side is $A_P \otimes_{B_Q} N_Q$ so this is an isomorphism.

There are lots of other ways to see this. One is that we could use the universal property on the right to get a map in the other direction. Another way to do this would be to take a presentation of N

(17)
$$B^{(I)} \to B^{(I)} \to N \to 0 .$$

This gives a presentation:

(18)
$$\mathcal{O}_Y^{(I)} \to \mathcal{O}_Y^{(I)} \to \tilde{N} \to 0$$

 $^{{}^1\}varphi^{-1}$ was left adjoint to φ_* when dealing with sheaves of sets or abelian groups rather than modules.

and then φ^* gives us

(19)
$$\mathcal{O}_X^{(I)} \longrightarrow \mathcal{O}_Y^{(I)} \longrightarrow \varphi^* \tilde{N} \to 0$$
$$A^{(I)} \longrightarrow A^{(I)} \longrightarrow A \otimes_B N \to 0$$

and we just compare these. n

2.1. Generic schemes. This was just for affine schemes but for any morphisms of schemes $X \to Y$, we can cover Y with affines, take the preimage of these, then cover these preimages, and then just patch everything together. So for all schemes

(20)
$$\varphi^* \left(\mathbf{QCoh} \left(Y \right) \right) \subseteq \mathbf{QCoh} \left(X \right) .$$

3. ВАСК ТО Ргој

Let $X = \operatorname{Proj} R$, and M be a graded R-module. Then \tilde{M} is an \mathcal{O}_X module. On $X_f = \operatorname{Spec} (R_f)_0$

(21)
$$\tilde{M}\Big|_{X_f} = (M_f)_0^{\sim}$$

Now we can shift degrees

$$(22) \qquad \qquad (M[d])_n = M_{n+d}$$

to get

(23)
$$\mathcal{O}_X(d) = R\left[d\right]^{\sim}$$

Now suppose that the degree of f divides d, i.e. for some $k \deg f \cdot k = d$. Then

(24)
$$\mathcal{O}_{X_f}(d) = (R_f[d])_0^{\sim} = (R_f)_d^{\sim}$$

thought of as an $(R_f)_d$ -module. But now we actually have an isomorphism of modules:

$$(25) \qquad \qquad (R_f)_0 \to (R_f)_d$$

given by multiplication by f^k , and f^{-k} respectively. Therefore we have

(26)
$$\mathcal{O}_{X_f}^{(d)} \cong \mathcal{O}_X|_{X_f} \ .$$

From here on we will assume² that the collection of X_f 's such that deg f = 1 form a cover, or said differently:

$$V(R_1) = V(R_+)$$

(or $V(R_1) = \emptyset$ in $X = \operatorname{Proj} R$). This will imply that $\mathcal{O}_X(d)$ is:

- (1) locally free of rank 1, or
- (2) a line bundle³, or
- (3) an invertible sheaf.

3

256B

 $^{^{2}}$ This is justified by this thinning argument from a few lectures ago.

³This terminology will be justified later.

4. Invertible sheaves

Let X be a ringed space, and let \mathcal{L} be an invertible sheaf, i.e. we can cover X with opens U such that

(28)
$$\mathcal{L}|_U \simeq \mathcal{O}_X (U) \ .$$

The nice thing about \mathcal{O}_X is that it has a distinguished section: 1. Under this isomorphism, this will go to $\sigma_U \in \mathcal{L}(U)$. Now we can consider $\mathcal{L}(U \cap V)$. Then we have two sections σ_U and σ_V which are each local generating sections. I.e. there is some g_{UV} such that $\sigma_U = g_{UV}\sigma_V$ and some g_{VU} such that and $\sigma_V = g_{VU}\sigma_U$, i.e. $g_{UV}g_{VU} = 1$, so $g_{UV}g_{VU} \in \mathcal{O}(U \cap V)^{\times}$ and $g_{VU} = g_{UV}^{-1}$. Then there is some sort of compatibility which says that on $U \cap V \cap W$ we have

(29)
$$\sigma_W = g_{VW}\sigma_V = g_{VW}g_{UV}\sigma_U = g_{UW}\sigma_U$$

which means $g_{UW} = g_{VW}g_{UV}$. Given this compatible data, this determines \mathcal{L} completely.

We could also have alternative sections $\sigma'_U = h_U \sigma_U$, where $h_U \in \mathcal{O}(U)^{\times}$. What is really happening here is something cohomological. The idea is that the σ s are the 0-cycles, the choices of these gs are the 1-cycles, and the 2-cycles are the things on triple intersections:

Then the sheaf cohomology

(31)
$$H^1\left(X, \mathcal{O}_X^{\times}\right) = \operatorname{Pic}\left(X\right) \;,$$

which is called the Picard group of X, consists of the invertible sheaves on X. This is a group with respect to tensor products.