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1. Picard group

1.1. Invertible sheaves. Consider some invertible sheaf (line bundle) L on a
ringed space (X,OX). Cover X by opens U where we have

OX |U
'−→ L|U .

In particular, choose an isomorphism 1 7→ σU ∈ L (U). Then every σ ∈ L (U)
is f · σU for a unique f ∈ OX (U). So we choose some σU for every U in some
compatible fashion. On U ∩ V we have σU , σV ∈ L (U ∩ V ), and for some gUV we
have σU = gUV σV , σV = gV UσU . This means σU = gUV gV UσU , so gUV gV U = 1.
In particular, gUV , gV U ∈ OX (U ∩ V )

×
and gV U = g−1UV .

On the triple intersections U ∩ V ∩W we have

σU = gUWσW = gUV σV = gUV gVWσW

which implies

gUW = gUV gVW .

Given all of this data (the gUV s) we can glue copies of OX |U to get L.
Now consider L ⊗M. Assume we have trivialized them both on the same open

covering.1 So we have σU ∈ L (U) and τU ∈M (U) and

OX |U
'−→ L|U ⊗ M|U

where 1 7→ σU⊗τU . Then the structure constants hUV for L⊗M are just fUV ·gUV

where fUV are the structure constants for M.
If we take L = OX , we might as well take σU = 1 and gUV = 1. Then for all

M, M⊗OX
OX =M. We could also define some L∨ to have structure constants

hUV = g−1UV for the above gUV , and then the product of these will give us that the
structure constants are 1. By construction L∨ satisfies L∨ ⊗OX

L ' OX . So we
have inverses and a unit with respect to tensor product. In particular, the set of
invertible sheaves modulo isomorphism forms the Picard group Pic (X), which is
an abelian group with respect to ⊗.
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1We can do this since given two different coverings we might as well just refine them so they

are both trivialized on one refined version.
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1.2. Čech cohomology. Let sU ∈ OX (U)
×

. Then 1 7→ sU defines an isomorphism

OX |U
'−→ OX |U . Then the structure constants will be of the form gUV = sU/sV .

So we can form the following groups:

C0 C1 C2 · · ·∏
U OX (U)

× ∏
U,V OX (U ∩ V )

× ∏
U,V,W OX (U ∩ V ∩W )

× · · ·

(sU ) gUV = sU/sV 1 · · ·

(gUV ) gUW / (gUV gVW ) · · ·

This is the Čech cohomology of this sheaf with respect to this covering. Then we
can define the actual Čech cohomology of the sheaf to be:

lim
U
H1

U

(
X,O×X

)
= H1

(
X,O×X

)
.

The idea is that H1
(
X,O×X

)
consists of the invertible sheaves which are trivializable

on our covering, where we somehow forget the trivialization. I.e. we identify two
trivializations which give the same invertible sheaf up to isomorphism.

1.3. Digression. Let X be a C-analytic variety. We can map ez : OX → O×X . The
kernel of this is somehow Z (or 2πZ) and this is also surjective:

0 Z OX O×X 0

where we regard Z as the constant sheaf. This gives us a long exact sequence of
cohomology:

H1 (X,OX) H1
(
X,O×X

)
= Pic (X) H2 (X,Z) H2 (X,OX)

L c (L)

where the second map is in fact the Chern class map. For X = Pn
C for n ≥ 0 we

have H1 (X,OX) = 0, and H2 (X,OX) = 0 as well, so in this case we have an
isomorphism between the middle terms H2 (Pn

C,Z) = Pic (Pn
C) = Z. This is the

usual complex analytic fact that Pic (X) = OX (d). For k any field2 the same is
true for Pn

k .

1.4. Back to invertible sheaves.

Example 1. Let L = OX (d) = R [d]
∼

on X = Pn
A = ProjA [x0, · · · , xn] = ProjR.

Take the covering Ui = Xxi = SpecA
[
x, x−1i

]
0

so we have:

OX (d)|Ui
=
(
A
[
x, x−1i

]
d

)∼
.

Then we have xdi ∈ OX (d) (Ui), and an isomorphism

A
[
x, x−1i

]
0

'−→ A
[
x, x−1

]
d

2This isn’t true for any commutative ring however.



LECTURE 11 MATH 256B 3

where 1 7→ xdi . In other words, σUi
= xdi , which means

gi,j =
xdi
xdj

.

This makes sense since O (Ui ∩ Uj) = A
[
x, x−1i , x−1j

]
0
.

Notice that if we consider X = ProjR/I ⊆ Pn
A, the same story holds since we

can take the same cover and just intersect them with X.

The special thing about the previous example is that we covered X with Xf such
that deg (f) = 1. But this isn’t such a restrictive condition as we saw last time. So
now we insist that V (R1) = V (R+), which is equivalent to V (R1) = ∅ in ProjR,
which is equivalent to the Xf (for f ∈ R1) covering X.

Under this assumption, the OX (d) are invertible for all d, with OX |Xf

'−→
OX (d)|Xf

. We can also see right away that

OX (d)⊗OX (e) = OX (d+ e) .

Actually this is a reflection of the following more general fact. Let M and N be
two graded R modules, we can compare:

M̃ ⊗OX
Ñ (M ⊗R N)

∼
.

We might expect these to be the same, but let’s look a bit closer. On Xf these
look like: (

Mf ⊗Rf
Nf

)
0

(Mf )0 ⊗(Rf )0
(Nf )0 .

Of course there is a map in the left direction which sends m ⊗ n ←[ m ⊗ n, but
there could be other things on the left. For example we could take m ∈ (Mf )k and
n ∈ (Nf )−k and then m ⊗ n is on the left. However, if deg (f) = 1 we have that

such an m⊗ n = f−km⊗ fkn. The point is that these actually are isomorphic for
deg (f) = 1.

So now if we’re in the setting that V (R1) = V (R+), then

R [f ]
∼ ⊗R R [e]

∼
= R [d+ e]

∼
.

More generally, for any OX -module M we can twist it by:

M (d) := OX (d)⊗OX
M .

Now we want to look at the global sections:

Γ∗ (M) =
⊕
d∈Z

Γ (X,M (d)) .

This is a graded R-module. The point is that Rd → Γ (X,OX (d)) and then we can
take

Γ (X,OX (d))⊗ Γ (X,M (e))→ Γ (X,M (d+ e)) .

So now we have a functor ·̃ from graded R-modules to OX -modules, and a functor
Γ∗ from OX -modules to graded R-modules. Comparing this with the affine world
we might expect these to be inverse, but this situation isn’t quite so nice. It will
turn out to be the case however that if M is qco, the sheaf associated to Γ∗ (M)
will be M again as long as the Proj is quasicompact.


	1. Picard group
	1.1. Invertible sheaves
	1.2. Cech cohomology
	1.3. Digression
	1.4. Back to invertible sheaves


